精英家教网 > 高中数学 > 题目详情
12.若不等式|x-m|<n(n>0)的解集为(-1,5),求不等式|x+n|>m的解集.

分析 由条件求得求得m-n<x<m+n,再根据它的解集为(-1,5),求得m和n的值,即可求不等式|x+n|>m的解集.

解答 解:∵|x-m|<n(n>0),
∴m-n<x<m+n,
∵不等式|x-m|<n(n>0)的解集为(-1,5),
∴$\left\{\begin{array}{l}{m-n=-1}\\{m+n=5}\end{array}\right.$,
∴m=2,n=3,
∴|x+n|>m,即|x+3|>2,
∴x+3>2或x+3<-2,
∴x>-1或x<-5,
∴不等式|x+n|>m的解集为{x|x>-1或x<-5}.

点评 本题主要考查绝对值不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.与方程θ=$\frac{π}{4}$(ρ≥0)表示同一曲线的是(  )
A.θ=$\frac{π}{4}$(ρ∈R)B.θ=$\frac{5π}{4}$(ρ≤0)C.θ=$\frac{5π}{4}$(ρ∈R)D.θ=$\frac{π}{4}$(ρ≤0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2,点M(1,$\frac{{\sqrt{2}}}{2}}$)在椭圆C上.
(I)求椭圆C的方程;
(II)如图,过F1任意作两条互相垂直的直线l1,l2分别交椭圆C于A,B两点和D,E两点,P,Q分别为AB和DE的中点.试探究直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C:x2+(y-1)2=9内有一点P($\sqrt{3}$,2),过点P作直线l交圆C于A、B两点.
(1)当直线l经过圆心C时,求直线l的方程;
(2)当直线l的倾斜角为$\frac{π}{3}$时,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=(x-2)ex+a(x-1)2(a≥0)在(0,2)内有两个零点,则实数a的取值范围是(  )
A.a>0B.a>1C.a>$\sqrt{2}$D.a>2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在如图所示的四棱锥E-ABCD中,底面ABCD为直角梯形,AB⊥AD,CD⊥AD,且AB=AD=$\frac{1}{2}$CD=2,侧面BEC为正三角形,且平面BEC⊥平面ABCD.
(1)在CD上是否存在一点F,使得BC∥平面AEF;
(2)求直线AE与平面BEC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设x=$\frac{1-\sqrt{5}}{2}$,y=$\frac{1+\sqrt{5}}{2}$,经计算得到x+y=1,x2+y2=3,x3+y3=4,…,则x7+y7=(  )
A.18B.28C.29D.47

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
总计
爱好402060
不爱好203050
总计6050110
由K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$,算得K2=$\frac{110×(40×30-20×20)^2}{60×50×60×50}$≈7.8.
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过1%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过1%的前提下,认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若关于x的不等式|2-x|+|x+a|<5有解,则实数a的取值范围是-7<a<3.

查看答案和解析>>

同步练习册答案