·ÖÎö £¨¢ñ£©ÓÉÒÑÖªÌõ¼þµÃµ½¹ØÓÚa£¬b£¬cµÄ·½³Ì×飬Çó½â·½³Ì×éµÃµ½a2£¬b2µÄÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©ÓÉ£¨1£©Çó³öÍÖÔ²×ó½¹µãF1µÄ×ø±ê£¬Éè³öÁ½Ö±ÏßбÂʾù´æÔÚʱ£¬Ö±ÏßABµÄ·½³ÌΪy=k£¨x+1£©£¬ÁªÁ¢Ö±Ïß·½³ÌÓëÍÖÔ²·½³Ì£¬Çó³öABÖеã×ø±ê£¬ÓÃ-$\frac{1}{k}$´ú»»k£¬µÃµ½µãQµÄ×ø±ê£¬½øÒ»²½µÃµ½PQËùÔÚÖ±Ïß·½³Ì£¬µÃµ½Ö±ÏßPQ¹ý¶¨µã£¨$-\frac{2}{3}$£¬0£©£»ÈôÁ½Ö±ÏßÖÐÓÐÒ»ÌõбÂʲ»´æÔÚ£¬ÔòÓÉÌâÒâÖªÖ±ÏßPQΪxÖᣬ½áÂÛÈÔÈ»³ÉÁ¢£¬ÓÉ´Ë˵Ã÷Ö±ÏßPQ¹ý¶¨µã£®
½â´ð ½â£º£¨¢ñ£©¡ßÍÖÔ²C£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ½¹¾àΪ2£¬ÇÒµãM£¨1£¬$\frac{{\sqrt{2}}}{2}}$£©ÔÚÍÖÔ²CÉÏ£¬
¡à$\left\{\begin{array}{l}{c=1}\\{\frac{1}{{a}^{2}}+\frac{1}{2{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬
½âµÃ£ºa2=2£¬b2=1£®
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨¢ò£©ÓÉ£¨¢ñ£©µÃ$c=\sqrt{{a}^{2}-{b}^{2}}=\sqrt{2-1}-1$£¬
¡àF1£¨-1£¬0£©£®
ÈôÁ½Ö±ÏßбÂʾù´æÔÚ£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=k£¨x+1£©£¬
´úÈëÍÖÔ²CµÄ¹ì¼£·½³Ì£¬µÃµ½£º£¨1+2k2£©x2+4k2x+2k2-2=0£¬
¡à${x}_{1}+{x}_{2}=\frac{-4{k}^{2}}{1+2{k}^{2}}$£¬${y}_{1}+{y}_{2}=k£¨{x}_{1}+{x}_{2}£©+2k=k\frac{-4{k}^{2}}{1+2{k}^{2}}+2k$=$\frac{2k}{1+2{k}^{2}}$£®
ÔòABµÄÖеã×ø±êΪP£¨$\frac{-2{k}^{2}}{1+2{k}^{2}}$£¬$\frac{k}{1+2{k}^{2}}$£©£¬
½«ÉÏʽÖеÄkÓÃ-$\frac{1}{k}$´ú»»£¬µÃµ½µãQµÄ×ø±ê£¨$-\frac{2}{{k}^{2}+2}$£¬$-\frac{k}{{k}^{2}+2}$£©£¬
ÓɵãP£¬QµÄ×ø±êµÃµ½Ö±ÏßPQµÄ·½³ÌΪ$y+\frac{k}{{k}^{2}+2}=\frac{3k}{2£¨1-{k}^{2}£©}£¨x+\frac{2}{{k}^{2}+2}£©$£®
¼´$y=\frac{3k}{2£¨1-{k}^{2}£©}£¨x+\frac{2}{3}£©$£¬
¡àÖ±ÏßPQ¹ý¶¨µã£¨$-\frac{2}{3}$£¬0£©£¬
ÈôÁ½Ö±ÏßÖÐÓÐÒ»ÌõбÂʲ»´æÔÚ£¬ÔòÓÉÌâÒâÖªÖ±ÏßPQΪxÖᣬÉÏÊö½áÂÛÈÔÈ»³ÉÁ¢£®
¡àÖ±ÏßPQ¹ý¶¨µã£¨$-\frac{2}{3}$£¬0£©£®
µãÆÀ ±¾Ì⿼²éµãµÄ¹ì¼£·½³ÌµÄÇ󷨣¬¿¼²éÖ±ÏßÊÇ·ñ¹ý¶¨µãµÄÅжϷ½·¨£¬ÑµÁ·ÁËÖ±ÏßÓëÔ²×¶ÇúÏßλÖùØÏµµÄÓ¦Óã¬×¢Ò⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã¬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com