3£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬½¹¾àΪ2£¬µãM£¨1£¬$\frac{{\sqrt{2}}}{2}}$£©ÔÚÍÖÔ²CÉÏ£®
£¨I£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨II£©Èçͼ£¬¹ýF1ÈÎÒâ×÷Á½Ìõ»¥Ïà´¹Ö±µÄÖ±Ïßl1£¬l2·Ö±ð½»ÍÖÔ²CÓÚA£¬BÁ½µãºÍD£¬EÁ½µã£¬P£¬Q·Ö±ðΪABºÍDEµÄÖе㣮ÊÔ̽¾¿Ö±ÏßPQÊÇ·ñ¹ý¶¨µã£¿Èô¹ý¶¨µã£¬Çó³ö¶¨µã×ø±ê£»Èô²»¹ý¶¨µã£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉÒÑÖªÌõ¼þµÃµ½¹ØÓÚa£¬b£¬cµÄ·½³Ì×飬Çó½â·½³Ì×éµÃµ½a2£¬b2µÄÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©ÓÉ£¨1£©Çó³öÍÖÔ²×ó½¹µãF1µÄ×ø±ê£¬Éè³öÁ½Ö±ÏßбÂʾù´æÔÚʱ£¬Ö±ÏßABµÄ·½³ÌΪy=k£¨x+1£©£¬ÁªÁ¢Ö±Ïß·½³ÌÓëÍÖÔ²·½³Ì£¬Çó³öABÖеã×ø±ê£¬ÓÃ-$\frac{1}{k}$´ú»»k£¬µÃµ½µãQµÄ×ø±ê£¬½øÒ»²½µÃµ½PQËùÔÚÖ±Ïß·½³Ì£¬µÃµ½Ö±ÏßPQ¹ý¶¨µã£¨$-\frac{2}{3}$£¬0£©£»ÈôÁ½Ö±ÏßÖÐÓÐÒ»ÌõбÂʲ»´æÔÚ£¬ÔòÓÉÌâÒâÖªÖ±ÏßPQΪxÖᣬ½áÂÛÈÔÈ»³ÉÁ¢£¬ÓÉ´Ë˵Ã÷Ö±ÏßPQ¹ý¶¨µã£®

½â´ð ½â£º£¨¢ñ£©¡ßÍÖÔ²C£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ½¹¾àΪ2£¬ÇÒµãM£¨1£¬$\frac{{\sqrt{2}}}{2}}$£©ÔÚÍÖÔ²CÉÏ£¬
¡à$\left\{\begin{array}{l}{c=1}\\{\frac{1}{{a}^{2}}+\frac{1}{2{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬
½âµÃ£ºa2=2£¬b2=1£®
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨¢ò£©ÓÉ£¨¢ñ£©µÃ$c=\sqrt{{a}^{2}-{b}^{2}}=\sqrt{2-1}-1$£¬
¡àF1£¨-1£¬0£©£®
ÈôÁ½Ö±ÏßбÂʾù´æÔÚ£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=k£¨x+1£©£¬
´úÈëÍÖÔ²CµÄ¹ì¼£·½³Ì£¬µÃµ½£º£¨1+2k2£©x2+4k2x+2k2-2=0£¬
¡à${x}_{1}+{x}_{2}=\frac{-4{k}^{2}}{1+2{k}^{2}}$£¬${y}_{1}+{y}_{2}=k£¨{x}_{1}+{x}_{2}£©+2k=k\frac{-4{k}^{2}}{1+2{k}^{2}}+2k$=$\frac{2k}{1+2{k}^{2}}$£®
ÔòABµÄÖеã×ø±êΪP£¨$\frac{-2{k}^{2}}{1+2{k}^{2}}$£¬$\frac{k}{1+2{k}^{2}}$£©£¬
½«ÉÏʽÖеÄkÓÃ-$\frac{1}{k}$´ú»»£¬µÃµ½µãQµÄ×ø±ê£¨$-\frac{2}{{k}^{2}+2}$£¬$-\frac{k}{{k}^{2}+2}$£©£¬
ÓɵãP£¬QµÄ×ø±êµÃµ½Ö±ÏßPQµÄ·½³ÌΪ$y+\frac{k}{{k}^{2}+2}=\frac{3k}{2£¨1-{k}^{2}£©}£¨x+\frac{2}{{k}^{2}+2}£©$£®
¼´$y=\frac{3k}{2£¨1-{k}^{2}£©}£¨x+\frac{2}{3}£©$£¬
¡àÖ±ÏßPQ¹ý¶¨µã£¨$-\frac{2}{3}$£¬0£©£¬
ÈôÁ½Ö±ÏßÖÐÓÐÒ»ÌõбÂʲ»´æÔÚ£¬ÔòÓÉÌâÒâÖªÖ±ÏßPQΪxÖᣬÉÏÊö½áÂÛÈÔÈ»³ÉÁ¢£®
¡àÖ±ÏßPQ¹ý¶¨µã£¨$-\frac{2}{3}$£¬0£©£®

µãÆÀ ±¾Ì⿼²éµãµÄ¹ì¼£·½³ÌµÄÇ󷨣¬¿¼²éÖ±ÏßÊÇ·ñ¹ý¶¨µãµÄÅжϷ½·¨£¬ÑµÁ·ÁËÖ±ÏßÓëÔ²×¶ÇúÏßλÖùØÏµµÄÓ¦Óã¬×¢Ò⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®¶¨ÒåÔÚRÉϵĿɵ¼º¯Êýf£¨x£©£¬ÒÑÖªy=ef'£¨x£©µÄͼÏóÈçͼ£¬Ôòy=f£¨x£©µÄµÝ¼õÇø¼äÊÇ£¨2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®¹Û²ìÏÂÁеÈʽ£º32=52-42£¬52=132-122£¬72=252-242£¬92=412-402£¬¡­Õմ˹æÂÉ£¬µÚn¸öµÈʽΪ£¨2n+1£©2=£¨2n2+2n+1£©2-£¨2n2+2n£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èçͼ£¬µÚ1¸öͼÐÎÊÇÓÉÕýÈý½ÇÐΡ°À©Õ¹¡±¶øÀ´µÄ£¬µÚ2¸öͼÐÎÊÇÓÉÕý·½ÐΡ°À©Õ¹¡±¶øÀ´µÄ£¬µÚ3¸öͼÐÎÊÇÓÉÕýÎå±ßÐΡ°À©Õ¹¡±¶øÀ´µÄ£¬¡­£¬µÚn¸öͼÐÎÊÇÓÉÕýn+2±ßÐΡ°À©Õ¹¡±¶øÀ´µÄ£¨n¡ÊN*£©£®ÔòÔÚµÚn¸öͼÐÎÖй²ÓУ¨n+2£©£¨n+3£©¸ö¶¥µã£®£¨ÓÃn±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=|2x-1|+|x-a|£¬g£¨x£©=x-1£®
£¨1£©µ±a=-1ʱ£¬Çó²»µÈʽf£¨x£©£¼g£¨x£©µÄ½â¼¯£®
£¨2£©Èç¹û?x¡ÊR£¬f£¨x£©¡Ý1ºã³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®²»µÈʽ|$\sqrt{x-1}$-2|£¾1µÄ½â¼¯ÊÇ{x|1¡Üx£¼2»òx£¾10}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªtan£¨$\frac{¦Ð}{4}$+¦Á£©=$\frac{1}{3}$£®
£¨1£©Çó$\frac{sin2¦Á-co{s}^{2}¦Á}{1+sin2¦Á}$µÄÖµ£»
£¨2£©Èô¦ÁΪֱÏßlµÄÇãб½Ç£¬µ±Ö±ÏßlÓëÇúÏßC£ºx=1+$\sqrt{2y-{y}^{2}}$ÓÐÁ½¸ö½»µãʱ£¬ÇóÖ±ÏßlµÄ×ݽؾàbµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èô²»µÈʽ|x-m|£¼n£¨n£¾0£©µÄ½â¼¯Îª£¨-1£¬5£©£¬Çó²»µÈʽ|x+n|£¾mµÄ½â¼¯£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªËıßÐÎABCDΪ¾ØÐΣ¬PA¡ÍÆ½ÃæABCD£¬ÉèPA=AB=a£¬BC=2a£¬Çó¶þÃæ½ÇB-PC-DµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸