精英家教网 > 高中数学 > 题目详情
13.定义在R上的可导函数f(x),已知y=ef'(x)的图象如图,则y=f(x)的递减区间是(2,+∞).

分析 由题意知,欲求函数的增区间,由图象确定出函数导数为非负的区间就可以了,由于y=ef'(x)是一个指数型的函数,当指数大于0时函数值大于1,故由图象找出函数图象在直线y=1上面的那一部分的自变量的集合即为所求

解答 解:结合图象可知,
当x∈(-∞,2]时,ef′(x)≥1,即f′(x)≥0;
当x∈(2,+∞)时,ef′(x)<1,即f′(x)<0;
故函数y=f(x)的单调递减区间为(2,+∞),
故答案为:(2,+∞).

点评 本题考查函数的单调性与导数的关系,由于函数的导数是指数型函数的指数,故可以借助指数函数的图象观察出导数非负的区间,此即为函数的递增区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,四边形 A BCD为平行四边形,且SD=2,SC=DC=AS=AD=$\sqrt{2}$,平面 ASD⊥平面SDC.
(1)求证:SD⊥AC;
(2)求点D到面SBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=$\frac{1}{2}$AB=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到如图2所示的几何体D-ABC
(Ⅰ)求证:AD⊥平面BCD;
(Ⅱ)求点C到平面ABD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x-2|
(Ⅰ)解不等式;f(x)+f(2x+1)≥6;
(Ⅱ)已知a+b=1(a,b>0).且对于?x∈R,f(x-m)-f(-x)≤$\frac{4}{a}+\frac{1}{b}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.观察式子:
1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,
…,
则可归纳出一般式子为(  )
A.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{1}{2n-1}$ (n≥2)B.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<<$\frac{2n+1}{n}$ (n≥2)
C.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$ (n≥2)D.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<<$\frac{2n}{2n+1}$ (n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设a=$\frac{1}{2}cos6°$-$\frac{{\sqrt{3}}}{2}sin6°$,b=cos26°•$\frac{2tan13°}{{1-{{tan}^2}13°}}$,c=$\sqrt{\frac{1-cos50°}{2}}$,则有(  )
A.a>b>cB.a<b<cC.a<c<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17,则f(14)=17,记f1(n)=f(n),f2=f(f1(n))…fk+1=fk(f(n)),k∈N*则f2016(8)=(  )
A.3B.5C.8D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.与方程θ=$\frac{π}{4}$(ρ≥0)表示同一曲线的是(  )
A.θ=$\frac{π}{4}$(ρ∈R)B.θ=$\frac{5π}{4}$(ρ≤0)C.θ=$\frac{5π}{4}$(ρ∈R)D.θ=$\frac{π}{4}$(ρ≤0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2,点M(1,$\frac{{\sqrt{2}}}{2}}$)在椭圆C上.
(I)求椭圆C的方程;
(II)如图,过F1任意作两条互相垂直的直线l1,l2分别交椭圆C于A,B两点和D,E两点,P,Q分别为AB和DE的中点.试探究直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

同步练习册答案