精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=|2x-1|+|x-a|,g(x)=x-1.
(1)当a=-1时,求不等式f(x)<g(x)的解集.
(2)如果?x∈R,f(x)≥1恒成立,求a的取值范围.

分析 (1)当a=-1时,不等式f(x)>g(x)化为|2x-1|+|x+1|-x+1>0,去掉绝对值,作出函数的图象,即可求不等式f(x)<g(x)的解集.
(2)如果?x∈R,f(x)≥1恒成立,只需f(x)的最小值大于等于1即可.

解答 解:(1)当a=-1时,不等式f(x)>g(x)化为|2x-1|+|x+1|-x+1>0,
设函数$y=\left\{\begin{array}{l}-4x+1,x<-1\\-2x+3,-1≤x≤\frac{1}{2}\\ 2x+1,x>\frac{1}{2}\end{array}\right.$
其图象如图所示,从图象可知,当且仅当x∈R时,y>0,
所以原不等式的解集为{x|x∈R}
(2)?x∈R,f(x)≥1恒成立,只需f(x)的最小值大于等于1即可,
当$a≥\frac{1}{2}$时,$f(x)=|{2x-1}|+|{x-a}|=\left\{\begin{array}{l}-3x+a+1,x<\frac{1}{2}\\ x+a-1,\frac{1}{2}≤x≤a\\ 3x-a-1,x>a\end{array}\right.$,∴$f{(x)_{min}}=a-\frac{1}{2}$
同理,当$a<\frac{1}{2}$时,$f{(x)_{min}}=\frac{1}{2}-a$
∴$\left\{\begin{array}{l}a≥\frac{1}{2}\\ a-\frac{1}{2}≥1\end{array}\right.$或$\left\{\begin{array}{l}a<\frac{1}{2}\\ \frac{1}{2}-a≥1\end{array}\right.$,解得$a≥\frac{3}{2}$或$a≤\frac{1}{2}$
∴a的取值范围是$({-∞,-\frac{1}{2}}]∪[{\frac{3}{2},+∞})$.

点评 本题考查绝对值不等式的解法,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.观察式子:
1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,
…,
则可归纳出一般式子为(  )
A.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{1}{2n-1}$ (n≥2)B.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<<$\frac{2n+1}{n}$ (n≥2)
C.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$ (n≥2)D.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<<$\frac{2n}{2n+1}$ (n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=|3x-2|-b有两个零点,则实数b的取值范围是0<b<2..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将全体正整数排成一个三角形数阵:按照以上排列的规律,第20行(n≥3)从左到右的第3个数为208.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.观察下列等式
(1+x+x21=1+x+x2
(1+x+x22=1+2x+3x2+2x3+x4
(1+x+x23=1+3x+6x2+7x3+6x4+3x5+x6
(1+x+x24=1+4x+10x2+16x3+19x4+16x5+10x6+4x7+x8

若(1+x+x26=a0+a1x+a2x2+…+a12x12,则a2=21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2,点M(1,$\frac{{\sqrt{2}}}{2}}$)在椭圆C上.
(I)求椭圆C的方程;
(II)如图,过F1任意作两条互相垂直的直线l1,l2分别交椭圆C于A,B两点和D,E两点,P,Q分别为AB和DE的中点.试探究直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,已知$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{2}{tanB}$,则cosB的最小值为(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{2}}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=(x-2)ex+a(x-1)2(a≥0)在(0,2)内有两个零点,则实数a的取值范围是(  )
A.a>0B.a>1C.a>$\sqrt{2}$D.a>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直线y=x+m与曲线y=$\sqrt{1-{x}^{2}}$有两个不同交点,则实数m的范围是(  )
A.[-$\sqrt{2}$,$\sqrt{2}$]B.(-∞,-$\sqrt{2}$]∪[$\sqrt{2}$,+∞)C.(1,$\sqrt{2}$)D.[1,$\sqrt{2}$)

查看答案和解析>>

同步练习册答案