精英家教网 > 高中数学 > 题目详情

【题目】如图,六面体ABCDHEFG中,四边形ABCD为菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。

(1)求证:EG⊥DF;

(2)求BE与平面EFGH所成角的正弦值.

【答案】见解析

【解析】

解:(1)证明:连接AC,由AE CG可知四边形AEGC为平行四边形.

所以EG∥AC,而AC⊥BD,AC⊥BF,所以EG⊥BD,EG⊥BF,

因为BD∩BF=B,所以EG⊥平面BDHF,又DF平面BDHF,所以EG⊥DF。

(2)设AC∩BD=O,EG∩HF=P,由已知可得:平面ADHE∥平面BCGF,所以EH∥FG,同理可得:EF∥HG,所以四边形EFGH为平行四边形,所以P为EG的中点,O为AC的中点,所以OP綊AE,

从而OP⊥平面ABCD,

又OA⊥OB,所以OA,OB,OP两两垂直,由平面几何知识,得BF=2。

如图,建立空间直角坐标系Oxyz,则B(0,2,0),E(2,0,3),F(0,2,2),P(0,0,3),

所以=(2,-2,3),=(2,0,0,),=(0,2,-1).

设平面EFGH的法向量为n=(x,y,z),

可得

令y=1,则z=2。

所以n=(0,1,2).

设BE与平面EFGH所成角为θ,则sin θ=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

1)当时,解不等式

2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究教学方式对教学质量的影响,某高中数学老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩

(1)学校规定:成绩不低于75分的为优秀.请画出下面的列联表

甲班

乙班

合计

优秀

不优秀

合计

(2)判断有多大把握认为“成绩优秀与教学方式有关”.

下面临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)是奇函数,且满足f(x)=f(x+3),f(-2)=-3.若数列{an}中,a1=-1,且前n项和Sn满足=2×+1,则f(a5)+f(a6)=________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长均相等的正三棱柱ABCA1B1C1中,D为BB1的中点,F在AC1上,且DF⊥AC1,则下述结论:

①AC1⊥BC;

②AF=FC1

③平面DAC1⊥平面ACC1A1,其中正确的个数为( )

A.0 B.1

C.2 D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形的两条对角线相交于,现用五种颜色(其中一种为红色)对图中四个三角形进行染色,且每个三角形用一种颜色图染.

(1)若必须使用红色,求四个三角形中有且只有一组相邻三角形同色的染色方法的种数;

(2)若不使用红色,求四个三角形中所有相邻三角形都不同色的染色方法的种数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)已知是虚数, 是实数.

(1)求为何值时, 有最小值,并求出|的最小值;

(2)设,求证: 为纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P.

(1)求椭圆C的离心率;

(2)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则|a1|+|a2|+|a3|+|a4|+|a5|=32

α,β,γ是三个不同的平面,则“γα,γβ”是“αβ”的充分条件

已知sin,则cos.其中正确命题的个数为( )

A.0 B.1

C.2 D.3

查看答案和解析>>

同步练习册答案