精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分16分)已知是虚数, 是实数.

(1)求为何值时, 有最小值,并求出|的最小值;

(2)设,求证: 为纯虚数.

【答案】(1)(2)见解析

【解析】试题分析:(1)化简利用 是虚数为实数,解得 的轨迹方程利用几何意义即可的结果;(2)根据(1)的结论化简 即可得结论.

试题解析:(1)设,则

所以, ,又可得

表示点到点的距离,所以最小值为

解方程组并结合图形得

(2)

,所以为纯虚数

【 思路点晴】本题主要考查的是复数的乘法、除法运算和复数模的概念及复数的几何性质,属于难题题.解题时一定要注意和运算的准确性,否则很容易出现错误.解本题的关键是先利用复数的模长公式列方程解出的值,然后根据复数的乘法、除法的运算法则和的性质化简+,最后再根据复数的几何意义求出的范围. ).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别为.已知.

(1)求

(2)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列为等差数列, ,公差,且其中的三项成等比.

(1)求数列的通项公式以及它的前n项和

(2)若数列满足为数列的前项和,

3(2)的条件下,若不等式)恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,六面体ABCDHEFG中,四边形ABCD为菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。

(1)求证:EG⊥DF;

(2)求BE与平面EFGH所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产A、B两种产品,根据市场调查,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:单位是万元).

图1图2

(1)分别将A、B两种产品的利润表示为投资的函数,写出它们的函数关系式;

(2)现企业有20万元资金全部投入A、B两种产品的生产,问:怎样分配这20万元资金,能使获得的利润最大,其最大利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明准备利用暑假时间去旅游,妈妈为小明提供四个景点,九寨沟、泰山、长白山、武夷山.小明决定用所学的数学知识制定一个方案来决定去哪个景点:(如图)曲线和直线交于点.以为起点,再从曲线上任取两个点分别为终点得到两个向量,记这两个向量的数量积为.若去九寨沟;若去泰山;若去长白山; 去武夷山.

(1)若从这六个点中任取两个点分别为终点得到两个向量,分别求小明去九寨沟的概率和去泰山的概率;

(2)按上述方案,小明在曲线上取点作为向量的终点,则小明决定去武夷山.点在曲线上运动,若点的坐标为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知M(x0,y0)是椭圆C:=1上的任一点,从原点O向圆M:(x-x0)2+(y-y0)2=2作两条切线,分别交椭圆于点P,Q.

(1)若直线OP,OQ的斜率存在,并记为k1,k2,求证:k1k2为定值;

(2)试问|OP|2+|OQ|2是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等差数列,从a1,a2,a3,a4,a5,a6,a7中取走任意四项,则剩下三项构成等差数列的概率为( )

A. B.

C.1或 D.1或

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2=4,直线l:x+y=2.以O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系.

(1)将圆C和直线l的方程化为极坐标方程;

(2)P是l上的点,射线OP交圆C于点R,又点Q在OP上且满足|OQ|·|OP|=|OR|2,当点P在l上移动时,求点Q轨迹的极坐标方程.

查看答案和解析>>

同步练习册答案