已知函数,.
(1)当时,证明:;
(2)若,求k的取值范围.
(1)证明过程详见解析;(2)(-∞,0].
解析试题分析:本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的最值、不等式的基本性质等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力,考查学生的函数思想.第一问,先将转化为,先得到表达式,对求导,利用“单调递增;单调递减”解不等式求函数的单调区间,利用函数的单调性确定最小值所在的位置;第二问,将转化为,令F(x)=f(x)-g(x)对f(x)求导,由于的正负不明显,所以进行二次求导,二次求导后得到G¢(x)=ex-k,只需讨论k的正负,通过的单调性,求出的最值,来判断的正负,来判断的单调性,从而求的最值.
(1)当k=1时,设h(x)=f(x)-g(x)+=ex-x-1,h¢(x)=ex-1. 1分
当x∈(-∞,0)时,h¢(x)<0,h(x)单调递减;
当x∈(0,+∞)时,h¢(x)>0,h(x)单调递增.
所以h(x)≥h(0)=0.
故f(x)≥g(x)-. 4分
(2)设F(x)=f(x)-g(x)=ex-x2-x-1,则F¢(x)=ex-kx-1.
设G(x)=ex-kx-1,则G¢(x)=ex-k. 6分
(1)若k≤0时,则G¢(x)>0,G(x)单调递增,
当x∈(-∞,0)时,G(x)<G(0)=0,即F¢(x)<0,F(x)单调递减;
当x∈(0,+∞)时,G(x)>G(0)=0,即F¢(x)>0,F(x)单调递增.
故F(x)≥F(0)=0,此时f(x)≥g(x). 9分
(2)若k>0,则
当x∈(-∞,-)时,ex-1<0,-x2-x=-x(kx+2)<0,
从而F(x)=ex-1-x2-x<0,这时f(x)≥g(x)不成立. 11分
综上,k的取值范围是(-∞,0]. 12分
考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的最值、不等式的基本性质.
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x3-4x2+5x-4.
(1)求曲线f(x)在点(2,f(2))处的切线方程;
(2)求经过点A(2,-2)的曲线f(x)的切线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(14分)(2011•陕西)设f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与的大小关系;
(Ⅲ)求a的取值范围,使得g(a)﹣g(x)<对任意x>0成立.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,,且在点
处的切线方程为.
(1)求的值;
(2)若函数在区间内有且仅有一个极值点,求的取值范围;
(3)设为两曲线,的交点,且两曲线在交点处的切线分别为.若取,试判断当直线与轴围成等腰三角形时值的个数并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com