2£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÁ½¸ö½¹µãΪ${F_1}£¬{F_2}£¬|{{F_1}{F_2}}|=2\sqrt{2}$£¬µãA£¬BÔÚÍÖÔ²ÉÏ£¬F1ÔÚÏß¶ÎABÉÏ£¬ÇÒ¡÷ABF2µÄÖܳ¤µÈÓÚ$4\sqrt{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©¹ýÔ²O£ºx2+y2=4ÉÏÈÎÒâÒ»µãP×÷ÍÖÔ²CµÄÁ½ÌõÇÐÏßPMºÍPNÓëÔ²O½»ÓÚµãM£¬N£¬Çó¡÷PMNÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÓÉÒÑÖªÇóµÃa£¬cµÄÖµ£¬ÔÙÓÉÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©ÉèP£¨xP£¬yP£©£¬Ôò${{x}_{P}}^{2}+{{y}_{P}}^{2}=4$£®ÈôÁ½ÌõÇÐÏßÖÐÓÐÒ»ÌõÇÐÏßµÄбÂʲ»´æÔÚ£¬Çó³öPµÄ×ø±ê£¬Ö±½ÓÇóµÃ¡÷PMNÃæ»ý£»ÈôÁ½ÌõÇÐÏßµÄбÂʾù´æÔÚ£¬Ôò${x}_{P}¡Ù¡À\sqrt{3}$£®
Éè¹ýµãPµÄÍÖÔ²µÄÇÐÏß·½³ÌΪy-yP=k£¨x-xP£©£¬´úÈëÍÖÔ²·½³Ì£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓÃÅбðʽµÈÓÚ0µÃµ½¹ØÓÚkµÄ·½³Ì£¬ÔÙÓɸùÓëϵÊýµÄ¹ØÏµ¿ÉµÃPM¡ÍPN£¬ÇóµÃ|MN|£¬Ð´³öÈý½ÇÐÎÃæ»ý£¬ÀûÓûù±¾²»µÈʽÇóµÃÃæ»ý×î´óÖµ£®

½â´ð ½â£º£¨1£©ÓÉ¡÷ABF2µÄÖܳ¤µÈÓÚ$4\sqrt{3}$£¬¿ÉµÃ4a=4$\sqrt{3}$£¬a=$\sqrt{3}$£®
ÓÉ$|{F}_{1}{F}_{2}|=2\sqrt{2}$£¬µÃc=$\sqrt{2}$£¬¡àb2=a2-c2=1£®
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{3}+{y}^{2}=1$£»
£¨2£©ÉèP£¨xP£¬yP£©£¬Ôò${{x}_{P}}^{2}+{{y}_{P}}^{2}=4$£®
¢ÙÈôÁ½ÌõÇÐÏßÖÐÓÐÒ»ÌõÇÐÏßµÄбÂʲ»´æÔÚ£¬Ôò${x}_{P}=¡À\sqrt{3}$£¬yP=¡À1£®
ÁíÒ»ÌõÇÐÏßµÄбÂÊΪ0£¬´Ó¶øPM¡ÍPN£¬´Ëʱ${S}_{¡÷PMN}=\frac{1}{2}|PM|•|PN|=\frac{1}{2}¡Á2¡Á2\sqrt{3}=2\sqrt{3}$£®
¢ÚÈôÁ½ÌõÇÐÏßµÄбÂʾù´æÔÚ£¬Ôò${x}_{P}¡Ù¡À\sqrt{3}$£®
Éè¹ýµãPµÄÍÖÔ²µÄÇÐÏß·½³ÌΪy-yP=k£¨x-xP£©£¬´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥y²¢ÕûÀíµÃ£º
£¨1+3k2£©x2+6k£¨yP-kxP£©x$+3£¨{y}_{P}-k{x}_{P}£©^{2}-3=0$£®
ÒÀÌâÒâµÃ¡÷=0£¬¼´$£¨3-{{x}_{P}}^{2}£©{k}^{2}+2{x}_{P}{y}_{P}k+1-{{y}_{p}}^{2}=0$£®
ÉèÇÐÏßPM¡¢PNµÄбÂÊ·Ö±ðΪk1£¬k2£¬´Ó¶ø${k}_{1}{k}_{2}=\frac{1-{{y}_{P}}^{2}}{3-{{x}_{P}}^{2}}=\frac{{{x}_{P}}^{2}-3}{3-{{x}_{P}}^{2}}=-1$£®
¡àPM¡ÍPN£¬ÔòÏß¶ÎMNΪԲOµÄÖ±¾¶£¬|MN|=4£®
¡à${S}_{¡÷PMN}=\frac{1}{2}|PM|•|PN|¡Ü\frac{1}{4}£¨|PM{|}^{2}+|PN{|}^{2}£©$=$\frac{1}{4}|MN{|}^{2}=4$£®
µ±ÇÒ½öµ±|PM|=|PN|=2$\sqrt{2}$ʱ£¬¡÷PMNÈ¡×î´óÖµ4£®
×ÛÉÏ£¬¡÷PMNÃæ»ýµÄ×î´óֵΪ4£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÖ±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Óã¬ÑµÁ·ÁËÀûÓûù±¾²»µÈʽÇó×îÖµ£¬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Éèf'£¨x£©ÊǺ¯Êýf£¨x£©¶¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĵ¼º¯Êý£¬Âú×ã$xf'£¨x£©+2f£¨x£©=\frac{1}{x^2}$£¬ÔòÏÂÁв»µÈʽһ¶¨³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®$\frac{f£¨e£©}{e^2}£¾\frac{{f£¨{e^2}£©}}{e}$B£®$\frac{f£¨2£©}{9}£¼\frac{f£¨3£©}{4}$C£®$\frac{f£¨2£©}{e^2}£¾\frac{f£¨e£©}{4}$D£®$\frac{f£¨e£©}{e^2}£¼\frac{f£¨3£©}{9}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®µÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Èô¹«²îd£¾0£¬£¨S8-S5£©£¨S9-S5£©£¼0£¬Ôò£¨¡¡¡¡£©
A£®|a7|£¾|a8|B£®|a7|£¼|a8|C£®|a7|=|a8|D£®|a7|=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Îª¼ÓÇ¿´óѧÉúʵ¼ù¡¢´´ÐÂÄÜÁ¦ºÍÍŶӾ«ÉñµÄÅàÑø£¬´Ù½ø¸ßµÈ½ÌÓý½Ìѧ¸Ä¸ï£¬½ÌÓý²¿ÃÅÖ÷°ìÁËÈ«¹ú´óѧÉúÖÇÄÜÆû³µ¾ºÈü£®¸Ã¾ºÈü·ÖΪԤÈüºÍ¾öÈüÁ½¸ö½×¶Î£®Í¨¹ýÔ¤Èü£¬Ñ¡°Î³ö¼×¡¢ÒÒµÈÎåÖ§¶ÓÎé²Î¼Ó¾öÈü£¬²Î¼Ó¾öÈüµÄ¶ÓÎé°´ÕÕ³éÇ©·½Ê½¾ö¶¨³ö³¡Ë³Ðò£®
£¨¢ñ£©Çó¾öÈüÖмס¢ÒÒÁ½Ö§¶ÓÎéÇ¡ºÃÅÅÔÚǰÁ½Î»µÄ¸ÅÂÊ£»
£¨¢ò£© Èô¾öÈüÖм׶ӺÍÒÒ¶ÓÖ®¼ä¼ä¸ôµÄ¶ÓÎéÊý¼ÇΪX£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE£¨X£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Ä³Ñ§Ð£¸ßÒ»Ä꼶ѧÉúij´ÎÉíÌåËØÖÊÌåÄܲâÊÔµÄԭʼ³É¼¨²ÉÓðٷÖÖÆ£¬ÒÑÖªËùÓÐÕâЩѧÉúµÄԭʼ³É¼¨¾ù·Ö²¼ÔÚ[50£¬100]ÄÚ£¬·¢²¼³É¼¨Ê¹Óõȼ¶ÖƸ÷µÈ¼¶»®·Ö±ê×¼¼ûÏÂ±í£¬¹æ¶¨£ºA¡¢B¡¢CÈý¼¶ÎªºÏ¸ñµÈ¼¶£¬DΪ²»ºÏ¸ñµÈ¼¶£®
°Ù·ÖÖÆ85·Ö¼°ÒÔÉÏ70·Öµ½84·Ö60·Öµ½69·Ö60·ÖÒÔÏÂ
µÈ¼¶ABCD
ΪÁ˽â¸ÃУ¸ßÒ»Ä꼶ѧÉúÉíÌåËØÖÊÇé¿ö£¬´ÓÖгéÈ¡ÁËnÃûѧÉúµÄԭʼ³É¼¨×÷ΪÑù±¾½øÐÐͳ¼Æ£¬°´ÕÕ[50£¬60£©£¬[60£¬70£©£¬[70£¬80£©£¬[80£¬90£©£¬[90£¬100]µÄ·Ö×é×÷³öƵÂÊ·Ö²¼Ö±·½Í¼Èçͼ1Ëùʾ£¬Ñù±¾ÖзÖÊýÔÚ80·Ö¼°ÒÔÉϵÄËùÓÐÊý¾ÝµÄ¾¥Ò¶Í¼Èçͼ2Ëùʾ£®

£¨1£©ÇónºÍƵÂÊ·Ö²¼Ö±·½Í¼ÖÐx£¬yµÄÖµ£»
£¨2£©¸ù¾ÝÑù±¾¹À¼Æ×ÜÌåµÄ˼Ï룬ÒÔʼþ·¢ÉúµÄƵÂÊ×÷ΪÏàӦʼþ·¢ÉúµÄ¸ÅÂÊ£¬ÈôÔÚ¸ÃУ¸ßһѧÉúÖÐÈÎÑ¡3ÈË£¬ÇóÖÁÉÙÓÐ1È˳ɼ¨ÊǺϸñµÈ¼¶µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÍÖÔ²mx2+ny2=1ÓëÖ±Ïßy=1-4x½»ÓÚM¡¢NÁ½µã£¬¹ýÔ­µãÓëÏß¶ÎMNÖеãËùÔÚÖ±ÏßµÄбÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬Ôò$\frac{m}{n}$µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{2}}}{2}$B£®$\sqrt{2}$C£®$2\sqrt{2}$D£®$\frac{{3\sqrt{2}}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªF1£¨-c£¬0£©¡¢F2£¨c£¬0£©·Ö±ðÊÇÍÖÔ²G£º$\frac{x^2}{a^2}+\frac{y^2}{4}=1£¨{a£¾0}£©$µÄ×ó¡¢ÓÒ½¹µã£¬µãMÊÇÍÖÔ²ÉÏÒ»µã£¬ÇÒMF2¡ÍF1F2£¬|MF1|-|MF2|=$\frac{4}{3}$a£®
£¨1£©ÇóÍÖÔ²GµÄ·½³Ì£»
£¨2£©ÈôбÂÊΪ1µÄÖ±ÏßlÓëÍÖÔ²G½»ÓÚA¡¢BÁ½µã£¬ÒÔABΪµ××÷µÈÑüÈý½ÇÐΣ¬¶¥µãΪP£¨-3£¬2£©£¬Çó¡÷PABµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª¡ÑM£º£¨x+1£©2+y2=$\frac{49}{4}$µÄÔ²ÐÄΪM£¬¡ÑN£º£¨x-1£©2+y2=$\frac{1}{4}$µÄÔ²ÐÄΪN£¬Ò»¶¯Ô²MÄÚÇУ¬ÓëÔ²NÍâÇУ®
£¨¢ñ£©Çó¶¯Ô²Ô²ÐÄPµÄ¹ì¼£·½³Ì£»
£¨¢ò£©ÉèA£¬B·Ö±ðΪÇúÏßPÓëxÖáµÄ×óÓÒÁ½¸ö½»µã£¬¹ýµã£¨1£¬0£©µÄÖ±ÏßlÓëÇúÏßP½»ÓÚC£¬DÁ½µã£®Èô$\overrightarrow{AC}•\overrightarrow{DB}+\overrightarrow{AD}•\overrightarrow{CB}$=12£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×㣺|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1£¬ÇÒ$\overrightarrow{a}•\overrightarrow{b}=\frac{1}{2}$£¬Èô$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$£¬ÆäÖÐx£¾0£¬y£¾0ÇÒx+y=2£¬Ôò|$\overrightarrow{c}$|×îСֵÊÇ$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸