精英家教网 > 高中数学 > 题目详情
13.等差数列{an}的前n项和为Sn,若公差d>0,(S8-S5)(S9-S5)<0,则(  )
A.|a7|>|a8|B.|a7|<|a8|C.|a7|=|a8|D.|a7|=0

分析 根据题意,由(S8-S5)(S9-S5)<0分析可得(a6+a7+a8)(a6+a7+a8+a9)<0,结合等差数列的性质可得(a6+a7+a8)(a6+a7+a8+a9)<0?a7×(a7+a8)<0,
又由{an}的公差d>0,分析可得a7<0,a8>0,且|a7|<|a8|;即可得答案.

解答 解:根据题意,等差数列{an}中,有(S8-S5)(S9-S5)<0,
即(a6+a7+a8)(a6+a7+a8+a9)<0,
又由{an}为等差数列,则有(a6+a7+a8)=3a7,(a6+a7+a8+a9)=2(a7+a8),
(a6+a7+a8)(a6+a7+a8+a9)<0?a7×(a7+a8)<0,
a7与(a7+a8)异号,
又由公差d>0,
必有a7<0,a8>0,且|a7|<|a8|;
故选:B.

点评 本题考查等差数列的性质,关键是由(S8-S5)(S9-S5)<0,分析得到a7、a8之间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.空气质量按照空气质量指数大小分为七档(五级),相对应空气质量的七个类别,指数越大,说明污染的情况越严重,对人体危害越大.
指数级别类别户外活动建议
0~50可正常活动
51~100
101~150轻微污染易感人群症状有轻度加剧,健康人群出现刺激症状,心脏病和呼吸系统疾病患者应减少体积消耗和户外活动.
151~200轻度污染
201~250中度污染心脏病和肺病患者症状显著加剧,运动耐受力降低,健康人群中普遍出现症状,老年人和心脏病、肺病患者应减少体力活动.
251~300中度重污染
301~500重污染健康人运动耐受力降低,由明显强烈症状,提前出现某些疾病,老年人和病人应当留在室内,避免体力消耗,一般人群应尽量减少户外活动.
现统计邵阳市市区2016年10月至11月连续60天的空气质量指数,制成如图所示的频率分布直方图.

(1)求这60天中属轻度污染的天数;
(2)求这60天空气质量指数的平均值;
(3)将频率分布直方图中的五组从左到右依次命名为第一组,第二组,…,第五组.从第一组和第五组中的所有天数中抽出两天,记它们的空气质量指数分别为x,y,求事件|x-y|≤150的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等比数列{an}的公比为q(q≠1),等差数列{bn}的公差也为q,且a1+2a2=3a3
(Ι)求q的值;
(II)若数列{bn}的首项为2,其前n项和为Tn,当n≥2时,试比较bn与Tn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦点为F1,F2,且C上的点P满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=0,|PF1|=3,|PF2|=4,则双曲线C的离心率为(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\sqrt{5}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的左焦点作直线l与双曲线交于A,B两点,使得|AB|=4,若这样的直线有且仅有两条,则a的取值范围是(  )
A.(0,$\frac{1}{2}$)B.(2,+∞)C.($\frac{1}{2}$,2)D.(0,$\frac{1}{2}$)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知α∈($\frac{π}{2}$,π),且cos2α+sin(π+2α)=$\frac{3}{10}$,则tanα=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{{\begin{array}{l}{x=1+t}\\{y=\sqrt{3}t}\end{array}}\right.$(t为参数),椭圆C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ\end{array}$ (θ为参数)(1).直线l的极坐标方程与椭圆C的普通方程(2)设P(1,0)直线l与椭圆C相交于A,B两点,求线段||PA|-|PB||的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的两个焦点为${F_1},{F_2},|{{F_1}{F_2}}|=2\sqrt{2}$,点A,B在椭圆上,F1在线段AB上,且△ABF2的周长等于$4\sqrt{3}$.
(1)求椭圆C的标准方程;
(2)过圆O:x2+y2=4上任意一点P作椭圆C的两条切线PM和PN与圆O交于点M,N,求△PMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={x|-2≤x≤3},B={y|y=x2+2},则A∩B={x|2≤x≤3}.

查看答案和解析>>

同步练习册答案