分析 由题意可得tanα<0,再利用同角三角函数的基本关系求得tanα的值.
解答 解:∵α∈($\frac{π}{2}$,π),∴tanα<0,
∵cos2α+sin(π+2α)=cos2α-sin2α=cos2α-2sinαcosα=$\frac{3}{10}$,
∴$\frac{{cos}^{2}α-2sinαcosα}{{cos}^{2}α{+sin}^{2}α}$=$\frac{1-2tanα}{1{+tan}^{2}α}$=$\frac{3}{10}$,∴tanα=$\frac{1}{3}$ (舍去),或tanα=-7,
故答案为:-7.
点评 本题主要考查同角三角函数的基本关系的应用,诱导公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{1}{2}$] | B. | [$\frac{1}{2}$,$\frac{9}{4}$) | C. | [$\frac{1}{2}$,$\frac{9}{4}$] | D. | [$\frac{9}{4}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |a7|>|a8| | B. | |a7|<|a8| | C. | |a7|=|a8| | D. | |a7|=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | $2\sqrt{2}$ | D. | $\frac{{3\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com