精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x+1(x≤0)}\\{|lo{g}_{2}x|(x>0)}\end{array}\right.$,若方程f(x)=k有四个不同的实数根,x1、x2、x3、x4,则x1+x2+x3+x4的取值范围是(  )
A.[0,$\frac{1}{2}$]B.[$\frac{1}{2}$,$\frac{9}{4}$)C.[$\frac{1}{2}$,$\frac{9}{4}$]D.[$\frac{9}{4}$,+∞)

分析 由题意,当1<k<2时,方程有四个不同的解,且x1+x2=-2,x3x4=1且2≤x4<4,从而结合基本不等式及函数的单调性求解.

解答 解:由题意,当1<k<2时,方程有四个不同的解,
且x1+x2=-2,x3x4=1且2≤x4<4;
故2+$\frac{1}{2}$≤x3+x4<4+$\frac{1}{4}$,
故$\frac{1}{2}$≤x1+x2+x3+x4<$\frac{9}{4}$,
即x1+x2+x3+x4的取值范围是[$\frac{1}{2}$,$\frac{9}{4}$),
故选B.

点评 本题考查了函数与方程、不等式的关系,同时考查了数形结合的思想方法应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列命题正确的是(  )
A.若两条直线和同一个平面平行,则这两条直线平行
B.若一直线与两个平面所成的角相等,则这两个平面平行
C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D.若两个平面垂直于同一个平面,则这两个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,图中四边形都是边长为2的正方形,两条虚线相互垂直,则该几何体的表面积是(  )
A.$24+({\sqrt{2}+1})π$B.$24+({\sqrt{2}-1})π$C.$24-({\sqrt{2}+1})π$D.$24-({\sqrt{2}-1})π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:?x∈R,2x+$\frac{1}{{2}^{x}}$>2,命题q:?x∈[0,$\frac{π}{2}$],使sinx+cosx=$\frac{1}{2}$,则下列命题中为真命题的是(  )
A.¬p∧¬qB.¬p∧qC.p∧¬qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等比数列{an}的公比为q(q≠1),等差数列{bn}的公差也为q,且a1+2a2=3a3
(Ι)求q的值;
(II)若数列{bn}的首项为2,其前n项和为Tn,当n≥2时,试比较bn与Tn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=$\frac{1}{2+sinx+cosx}$的最大值是1+$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦点为F1,F2,且C上的点P满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=0,|PF1|=3,|PF2|=4,则双曲线C的离心率为(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\sqrt{5}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知α∈($\frac{π}{2}$,π),且cos2α+sin(π+2α)=$\frac{3}{10}$,则tanα=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数fn(x)=xn+bx+c(n∈Z,b,c∈R).
(1)若n=-1,且f-1(1)=f-1($\frac{1}{2}$)=4,试求实数b,c的值;
(2)设n=2,若对任意x1,x2∈[-1,1]有|f2(x1)-f2(x2)|≤4恒成立,求b的取值范围;
(3)当n=1时,已知bx2+cx-a=0,设g(x)=$\frac{{\sqrt{1-{x^4}}}}{{1+{x^2}}}$,是否存在正数a,使得对于区间$[{-\frac{{2\sqrt{5}}}{5},\frac{{2\sqrt{5}}}{5}}]$上的任意三个实数m,n,p,都存在以f1(g(m)),f1(g(n)),f1(g(p))为边长的三角形?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案