| A. | 若两条直线和同一个平面平行,则这两条直线平行 | |
| B. | 若一直线与两个平面所成的角相等,则这两个平面平行 | |
| C. | 若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 | |
| D. | 若两个平面垂直于同一个平面,则这两个平面平行 |
分析 若两条直线和同一个平面平行,则这两条直线可能平行、相交或为异面直线,排除A;利用直线与平面所成的角的定义,可排除B;利用线面平行的判定定理和性质定理可判断C正确;利用面面垂直的性质可排除D.
解答 解:A.若两条直线和同一个平面平行,则这两条直线可能平行、相交或为异面直线,故不正确;
B、若两条直线和同一个平面所成的角相等,则这两条直线平行、相交或异面,故B错误;
C、设平面α∩β=a,l∥α,l∥β,由线面平行的性质定理,在平面α内存在直线b∥l,在平面β内存在直线c∥l,所以由平行公理知b∥c,从而由线面平行的判定定理可证明b∥β,进而由线面平行的性质定理证明得b∥a,从而l∥a,故C正确;
D,若两个平面都垂直于第三个平面,则这两个平面平行或相交,例如:天花板与两个相交平面的位置关系;
故选:C.
点评 本题主要考查了空间线面平行和垂直的位置关系,线面平行的判定和性质,面面垂直的性质和判定,空间想象能力,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | {1,2} | B. | {0,1} | C. | {0,1,2} | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{1}{2}$] | B. | [$\frac{1}{2}$,$\frac{9}{4}$) | C. | [$\frac{1}{2}$,$\frac{9}{4}$] | D. | [$\frac{9}{4}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com