17£®Èçͼ1£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-c£¬0£©£¬F2£¨c£¬0£©£®ÒÑÖªµã£¨2£¬2e£©£¨eΪÍÖÔ²EµÄÀëÐÄÂÊ£©ÔÚÍÖÔ²ÉÏ£¬µãA1¡¢B1·Ö±ðΪÍÖÔ²µÄÓÒ¶¥µãºÍÉ϶¥µã£¬´ÓÍÖÔ²ÉÏÒ»µãMÏòxÖá×÷´¹Ïߣ¬´¹×ãΪ½¹µãF1£¬ÇÒMF2¡ÎA1B1£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÉèPΪÍÖÔ²ÉϵÚÒ»ÏóÏÞÄڵĵ㣬Èçͼ2£¬µãP¹ØÓÚÔ­µãOµÄ¶Ô³ÆµãΪA£¬µãP¹ØÓÚxÖáµÄ¶Ô³ÆµãΪQ£¬Ïß¶ÎPQÓëxÖá½»ÓÚµãC£¬$\overrightarrow{CD}$=$\frac{1}{2}$$\overrightarrow{DQ}$£¬ÈôÖ±ÏßADÓëÍÖÔ²EµÄÁíÒ»¸ö½»µãΪB£¬ÊÔÅжÏÖ±ÏßPA¡¢PBÊÇ·ñ»¥Ïà´¹Ö±£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

·ÖÎö £¨1£©ÓÉÒÑÖª¸ù¾ÝÍÖÔ²ÐÔÖÊÁгö·½³Ì×飬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²µÄ·½³Ì£®
£¨2£©Çó³öÖ±ÏßADµÄ·½³Ì£¬´úÈëÍÖÔ²µÄ·½³Ì£¬²¢ÕûÀí£¬Çó³öBµÄ×ø±ê£¬Ö¤Ã÷kPA•kPB¡Ù-1£¬¼´¿ÉµÃµ½Ö±ÏßPA¡¢PB²»´¹Ö±£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-c£¬0£©£¬F2£¨c£¬0£©£®
£¨2£¬2e£©£¨eΪÍÖÔ²EµÄÀëÐÄÂÊ£©ÔÚÍÖÔ²ÉÏ£¬µãA1¡¢B1·Ö±ðΪÍÖÔ²µÄÓÒ¶¥µãºÍÉ϶¥µã£¬
´ÓÍÖÔ²ÉÏÒ»µãMÏòxÖá×÷´¹Ïߣ¬´¹×ãΪ½¹µãF1£¬ÇÒMF2¡ÎA1B1£¬
¡à$\left\{\begin{array}{l}{\frac{4}{{a}^{2}}+\frac{4{e}^{2}}{{b}^{2}}=1}\\{\frac{\frac{{b}^{2}}{a}}{b}=\frac{2c}{a}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃa=$\sqrt{5}$£¬b=2£¬c=1£¬
¡àÍÖÔ²EµÄ·½³ÌΪ$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{4}=1$£®
£¨2£©PAÓëPB²»´¹Ö±£®
Ö¤Ã÷£ºÉèP£¨x0£¬y0£©£¬ÔòA£¨-x0£¬-y0£©£¬D£¨x0£¬-$\frac{{y}_{0}}{3}$£©£¬ÇÒ$\frac{{{x}_{0}}^{2}}{5}+\frac{{{y}_{0}}^{2}}{4}$=1£¬
½«Ö±ÏßADµÄ·½³Ìy=$\frac{{y}_{0}}{3{x}_{0}}$£¨x+x0£©-y0´úÈëÍÖÔ²µÄ·½³Ì£¬
²¢ÕûÀíµÃ£¨36x02+5${{y}_{0}}^{2}$£©x2-20x0y02x+20x02y02-180x02=0£¬
ÓÉÌâÒ⣬¿ÉÖª´Ë·½³Ì±ØÓÐÒ»¸ù-x0£¬
xB=$\frac{20{x}_{0}{{y}_{0}}^{2}}{36{{x}_{0}}^{2}+5{{y}_{0}}^{2}}$+x0£¬yB=$\frac{{y}_{0}}{3{x}_{0}}$£¨$\frac{20{x}_{0}{{y}_{0}}^{2}}{36{{x}_{0}}^{2}+5{{y}_{0}}^{2}}$+2x0£©-y0=$\frac{5{{y}_{0}}^{3}-12{{x}_{0}}^{2}{y}_{0}}{36{{x}_{0}}^{2}+5{{y}_{0}}^{2}}$£¬
¡àkPB=$\frac{\frac{5{{y}_{0}}^{3}-12{{x}_{0}}^{2}{y}_{0}}{36{{x}_{0}}^{2}+5{{y}_{0}}^{2}}-{y}_{0}}{\frac{20{x}_{0}{{y}_{0}}^{2}}{36{{x}_{0}}^{2}+5{{y}_{0}}^{2}}}$=-$\frac{12}{5}•\frac{{x}_{0}}{{y}_{0}}$£¬
¹ÊÓÐkPA•kPB=-$\frac{12}{5}$£¬¼´PAÓëPB²»´¹Ö±£®

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµ£¬¿¼²éÍÖÔ²µÄ·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨ÀíµÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªµãPÊǺ¯Êýy=sin£¨2x+¦È£©Í¼ÏóÓëxÖáµÄÒ»¸ö½»µã£¬A£¬BΪPµãÓÒ²àͬһÖÜÆÚÉϵÄ×î´óÖµºÍ×îСֵµã£¬Ôò$\overrightarrow{PA}$•$\overrightarrow{PB}$=£¨¡¡¡¡£©
A£®$\frac{\sqrt{3}¦Ð^2}{4}$-1B£®$\frac{3¦Ð^2}{4}$-1C£®$\frac{3¦Ð^2}{16}$-1D£®$\frac{¦Ð^2}{2}$-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªf£¨x£©=$\frac{mx}{{x}^{2}+n}$£¨x¡ÊR£©£¬Èô·½³Ìf£¨x£©-$\frac{3}{25}x$-$\frac{12}{25}$=0ÓÐÁ½¸ö¸ù1ºÍ4£®
£¨1£©Çóm¡¢nµÄÖµ¼°f£¨x£©µÄÖµÓò£»
£¨2£©ÈôF£¨x£©=k•f£¨x£©+6£¬¶ÔÓÚÈÎÒâʵÊýa¡¢b¡¢c£¬¶¼´æÔÚÒ»¸öÒÔF£¨a£©¡¢F£¨b£©¡¢F£¨c£©µÄÈý½ÇÐΣ¬ÇóʵÊýkµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÍÖÔ²¦££º$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÇÒÍÖÔ²¦£¹ýµãA£¨1£¬-$\frac{\sqrt{3}}{2}$£©£¬L¡¢NΪÍÖÔ²¦£ÉϹØÓÚÔ­µã¶Ô³ÆµÄÁ½µã£®
£¨I£©ÇóÍÖÔ²¦£µÄ·½³Ì£»
£¨2£©ÒÑÖªÔ²¦¸ÒÔÔ­µãΪԲÐÄ£¬2Ϊ°ë¾¶£¬QΪԲ¦¸Éϵĵ㣻¼ÇMΪÍÖÔ²µÄÓÒ¶¥µã£¬ÑÓ³¤MN½»Ô²¦¸ÓÚP£¬Ö±ÏßPQ¹ýµã£¨-$\frac{6}{5}$£¬0£©£®ÇóÖ¤£ºÖ±ÏßNLµÄбÂÊÓëÖ±ÏßPQµÄбÂÊÖ®±ÈΪ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÅ×ÎïÏßWµÄ¶¥µãÔÚÔ­µã£¬ÇÒ½¹µãΪF£¨1£¬0£©£¬²»¾­¹ý½¹µãFµÄÖ±ÏßlÓëÅ×ÎïÏßWÏཻÓÚA£¬BÁ½µã£¬ÇÒÅ×ÎïÏßWÉÏ´æÔÚÒ»µãC£¬Ê¹µÃËıßÐÎACBFΪƽÐÐËıßÐΣ®
£¨I£©ÇóÅ×ÎïÏßWµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÇóÖ¤£ºÖ±Ïßlºã¹ý¶¨µã£»
£¨¢ó£©ÇóËıßÐÎACBFÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=a+xln£¨x+1£©£¨a¡ÊR£©£®
£¨1£©µ±a=1ʱ£¬ÇóÇúÏßy=f£¨x£©ÔÚx=0´¦µÄÇÐÏß·½³Ì£»
£¨2£©ÒÑÖªx1¡Ê£¨-1£¬0£©£¬x2¡Ê£¨0£¬+¡Þ£©£¬ÇÒx1£¬x2ÊǺ¯ÊýF£¨x£©=$\frac{f£¨x£©}{x}$µÄÁ½¸ö¼«Öµµã£¬ÊÔÖ¤Ã÷£º?m¡Ê£¨-1£¬0£©£¬n¡Ê£¨0£¬+¡Þ£©£¬¶¼ÓÐF£¨m£©£¼F£¨n£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÔ²F1£º£¨x+1£©2+y2=16£¬Ô²ÐÄΪF1£¬¶¨µãF2£¨1£¬0£©£¬PΪԲF1ÉÏÒ»µã£¬Ïß¶ÎPF2µÄÉÏÒ»µãNÂú×ã$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{N{F}_{2}}$£¬Ö±ÏßPF1ÉÏÒ»µãQ£¬Âú×ã$\overrightarrow{QN}$•$\overrightarrow{P{F}_{2}}$=0
£¨1£©ÇóµãQµÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©¹ýµã£¨0£¬2£©µÄÖ±ÏßlÓëÇúÏßC½»ÓÚ²»Í¬µÄÁ½µãAºÍB£¬ÇÒÂú×ã¡ÏAOB£¼90¡ã£¨OÎª×ø±êÔ­µã£©£¬ÇóÏÒABµÄбÂʵÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÈôÔ²x2+y2-4x-4y-10=0ÉÏÖÁÉÙÓÐÈý¸ö²»Í¬µãµ½Ö±Ïßl£ºx-y+b=0µÄ¾àÀëΪ2$\sqrt{2}$£¬ÔòbµÄȡֵ·¶Î§ÊÇ[-2£¬2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®£¨1£©Èôx${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$=1£¬x+x-1=3£»
£¨2£©Èô£¨1£©ÖÐÌõ¼þ²»±ä£¬Çóx2+x-2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸