精英家教网 > 高中数学 > 题目详情
5.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{3}}{2}$,且椭圆Γ过点A(1,-$\frac{\sqrt{3}}{2}$),L、N为椭圆Γ上关于原点对称的两点.
(I)求椭圆Γ的方程;
(2)已知圆Ω以原点为圆心,2为半径,Q为圆Ω上的点;记M为椭圆的右顶点,延长MN交圆Ω于P,直线PQ过点(-$\frac{6}{5}$,0).求证:直线NL的斜率与直线PQ的斜率之比为定值.

分析 (1)由题意可得:$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,$\frac{1}{{a}^{2}}+\frac{3}{4{b}^{2}}$=1,又a2=b2+c2,联立解出即可得出.
(2)M(2,0),设N(x0,y0),则直线NL的斜率=$\frac{{y}_{0}}{{x}_{0}}$,${x}_{0}^{2}$-4=-4${y}_{0}^{2}$.圆Ω的方程为:x2+y2=4.直线MN的方程为:y=$\frac{{y}_{0}}{{x}_{0}-2}$(x-2),与圆的方程联立化为:$[({x}_{0}-2)^{2}+{y}_{0}^{2}]$x2-4${y}_{0}^{2}$x+$4{y}_{0}^{2}$-4$({x}_{0}-2)^{2}$=0,利用根与系数的关系可得点P的横坐标xP,进而得到yP,再利用斜率计算公式可得kPQ,即可得出结论.

解答 (I)解:由题意可得:$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,$\frac{1}{{a}^{2}}+\frac{3}{4{b}^{2}}$=1,又a2=b2+c2,联立解得a=2,b=1,c=$\sqrt{3}$.
∴椭圆Γ的方程为:$\frac{{x}^{2}}{4}+{y}^{2}$=1.
(2)证明:M(2,0),设N(x0,y0),则直线NL的斜率=$\frac{{y}_{0}}{{x}_{0}}$,${x}_{0}^{2}$-4=-4${y}_{0}^{2}$.
圆Ω的方程为:x2+y2=4.
直线MN的方程为:y=$\frac{{y}_{0}}{{x}_{0}-2}$(x-2),联立$\left\{\begin{array}{l}{y=\frac{{y}_{0}}{{x}_{0}-2}(x-2)}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,
化为:$[({x}_{0}-2)^{2}+{y}_{0}^{2}]$x2-4${y}_{0}^{2}$x+$4{y}_{0}^{2}$-4$({x}_{0}-2)^{2}$=0,
∴2xP=$\frac{4{y}_{0}^{2}-4({x}_{0}-2)^{2}}{({x}_{0}-2)^{2}+{y}_{0}^{2}}$,可得xP=$\frac{2{y}_{0}^{2}-2({x}_{0}-2)^{2}}{({x}_{0}-2)^{2}+{y}_{0}^{2}}$,∴yP=$\frac{{y}_{0}}{{x}_{0}-2}$(xP-2)=$\frac{-4{y}_{0}({x}_{0}-2)}{({x}_{0}-2)^{2}+{y}_{0}^{2}}$,
∴kPQ=$\frac{\frac{4{y}_{0}({x}_{0}-2)}{({x}_{0}-2)^{2}+{y}_{0}^{2}}}{-\frac{6}{5}-\frac{2{y}_{0}^{2}-2({x}_{0}-2)^{2}}{({x}_{0}-2)^{2}+{y}_{0}^{2}}}$=$\frac{5{y}_{0}({x}_{0}-2)}{({x}_{0}-2)^{2}-4{y}_{0}^{2}}$,
∴$\frac{{k}_{NL}}{{k}_{PQ}}$=$\frac{{y}_{0}}{{x}_{0}}$×$\frac{({x}_{0}-2)^{2}-4{y}_{0}^{2}}{5{y}_{0}({x}_{0}-2)}$=$\frac{({x}_{0}-2)^{2}+{x}_{0}^{2}-4}{5{x}_{0}({x}_{0}-2)}$=$\frac{2}{5}$为定值.

点评 本题考查了椭圆与圆的标准方程及其性质、直线与圆相交问题、斜率计算公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=3x3+2x,且$a=f(ln\frac{3}{2}),\;b=f({log_2}\frac{1}{3}),\;c=f({2^{0.3}})$,则(  )
A.c>a>bB.a>c>bC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知随机变量η~B(n,p),且E(2η)=8,D(4η)=32,则n与p的值分别是(  )
A.20与0.2B.5与0.8C.10与0.4D.8与0.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求曲线y=x2(x>0)在点A(2,4)的切线与该曲线以及x轴所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.曲线f(x)=xlnx+x在点x=2处的切线方程为(2+ln2)x-y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在R上定义运算⊙:x⊙y=$\frac{x}{2-y}$,如果关于x的不等式(x-a)⊙(x+1-a)≥0的解集是区间(-2,2)的子集,则实数a的取值范围是(  )
A.-2<a≤1B.-2≤a<1C.1≤a<2D.1<a≤2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图1,在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0).已知点(2,2e)(e为椭圆E的离心率)在椭圆上,点A1、B1分别为椭圆的右顶点和上顶点,从椭圆上一点M向x轴作垂线,垂足为焦点F1,且MF2∥A1B1
(1)求椭圆E的方程;
(2)设P为椭圆上第一象限内的点,如图2,点P关于原点O的对称点为A,点P关于x轴的对称点为Q,线段PQ与x轴交于点C,$\overrightarrow{CD}$=$\frac{1}{2}$$\overrightarrow{DQ}$,若直线AD与椭圆E的另一个交点为B,试判断直线PA、PB是否互相垂直,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=ex-ln(x+1)的单调递增区间是(0,∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系xOy中,圆(x-2)2+(y+1)2=1被直线x+2y-1=0截得的弦长为$\frac{4\sqrt{5}}{5}$.

查看答案和解析>>

同步练习册答案