分析 先求出圆心和半径,比较半径和2$\sqrt{2}$,要求 圆上至少有三个不同的点到直线l:x-y+b=0的距离为2$\sqrt{2}$,则圆心到直线的距离应小于等于$\sqrt{2}$,用圆心到直线的距离公式,可求得结果.
解答 解:圆x2+y2-4x-4y-10=0整理为(x-2)2+(y-2)2=18,
∴圆心坐标为(2,2),半径为3$\sqrt{2}$,
要求圆上至少有三个不同的点到直线l:x-y+b=0的距离为2$\sqrt{2}$,
则圆心到直线的距离d=$\frac{|b|}{\sqrt{2}}$≤$\sqrt{2}$,
∴-2≤b≤2,
∴b的取值范围是[-2,2],
故答案为:[-2,2].
点评 本题考查直线和圆的位置关系,圆心到直线的距离等知识,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 20与0.2 | B. | 5与0.8 | C. | 10与0.4 | D. | 8与0.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,2) | B. | (-2,4) | C. | ($\frac{1}{8}$,2) | D. | ($\frac{1}{8}$,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $1+\sqrt{3}$ | B. | $2+\sqrt{3}$ | C. | $12+6\sqrt{3}$ | D. | $4+2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com