精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)的导函数为f′(x),对任意的x∈R都有3f′(x)>f(x)成立,则(
A.3f(3ln2)>2f(3ln3)
B.3f(3ln2)与2f(3ln3)的大小不确定
C.3f(3ln2)=2f(3ln3)
D.3f(3ln2)<2f(3ln3)

【答案】D
【解析】解:令h(x)= ,则h′(x)= , 因为对任意的x∈R都有3f′(x)>f(x)成立,所以3f′(3lnx)>f(3lnx),
所以h′(x)>0,h(x)在(0,+∞)上单调递增,
所以h(2)<h(3),即
所以3f(3ln2)<2f(3ln3).
故选D.
【考点精析】关于本题考查的利用导数研究函数的单调性,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,a为正常数.
(1)若f(x)=lnx+φ(x),且a= ,求函数f(x)的单调增区间;
(2)在(1)中当a=0时,函数y=f(x)的图象上任意不同的两点A(x1 , y1),B(x2 , y2),线段AB的中点为C(x0 , y0),记直线AB的斜率为k,试证明:k>f'(x0).
(3)若g(x)=|lnx|+φ(x),且对任意的x1 , x2∈(0,2],x1≠x2 , 都有 ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:

等级

不合格

合格

得分

频数

6

24

(Ⅰ)求 的值;

(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈.现再从这10人这任选4人,记所选4人的量化总分为,求的分布列及数学期望

(Ⅲ)某评估机构以指标,其中表示的方差)来评估该校安全教育活动的成效.若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=﹣ eax(a>0,b>0)的图象在x=0处的切线与圆x2+y2=1相切,则a+b的最大值是(
A.4
B.2
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x)≥ ,则f(x)< + 的解集为(
A.{x|x<1}
B.{x|x>1}
C.{x|x<﹣1}
D.{x|x>﹣1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣ax2﹣3x.
(1)若a=4时,求f(x)在x∈[1,4]上的最大值和最小值;
(2)若f(x)在x∈[2,+∞]上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若 恒成立,求实数的取值范围;

(Ⅲ)当时,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,点E,F分别为BC、PD的中点,若PA=AD=4,AB=2.
(1)求证:EF∥平面PAB.
(2)求直线EF与平面PCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若 =3 ,则|QF|= , 点Q的坐标为

查看答案和解析>>

同步练习册答案