【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为
(t为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ. (Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C相交于A、B两点,当α变化时,求|AB|的最小值.
科目:高中数学 来源: 题型:
【题目】某企业招聘大学毕业生,经过综合测试,录用了14名女生和6名男生,这20名学生的测试成绩如茎叶图所示(单位:分),记成绩不小于80分者为
等,小于80分者为
等.
![]()
(1)求女生成绩的中位数及男生成绩的平均数;
(2)如果用分层抽样的方法从
等和
等中共抽取5人组成“创新团队”,则从
等和
等中分别抽几人?
(3)在(2)问的基础上,现从该“创新团队”中随机抽取2人,求至少有1人是
等的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业招聘大学毕业生,经过综合测试,录用了14名女生和6名男生,这20名学生的测试成绩如茎叶图所示(单位:分),记成绩不小于80分者为
等,小于80分者为
等.
![]()
(1)求女生成绩的中位数及男生成绩的平均数;
(2)如果用分层抽样的方法从
等和
等中共抽取5人组成“创新团队”,则从
等和
等中分别抽几人?
(3)在(2)问的基础上,现从该“创新团队”中随机抽取2人,求至少有1人是
等的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设O是坐标原点,椭圆C:x2+3y2=6的左右焦点分别为F1 , F2 , 且P,Q是椭圆C上不同的两点, (Ⅰ)若直线PQ过椭圆C的右焦点F2 , 且倾斜角为30°,求证:|F1P|、|PQ|、|QF1|成等差数列;
(Ⅱ)若P,Q两点使得直线OP,PQ,QO的斜率均存在.且成等比数列.求直线PQ的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】log0.72,log0.70.8,0.9﹣2的大小顺序是( )
A.log0.72<log0.70.8<0.9﹣2
B.log0.70.8<log0.72<0.9﹣2
C.0.9﹣2<log0.72<log0.70.8
D.log0.72<0.9﹣2<log0.70.8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
).
| |||||
|
|
| |||
|
(1)请结合所给表格,在所给的坐标系中作出函数
一个周期内的简图;
![]()
(2)求函数
的单调递增区间;
(3)求
的最大值和最小值及相应
的取值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(n)=1+
+
+…+
(n∈N*),计算得f(2)=
,f(4)>2,f(8)>
,f(16)>3,f(32)>
,由此推算:当n≥2时,有( )
A.f(2n)>
(n∈N*)
B.f(2n)>
(n∈N*)
C.f(2n)>
(n∈N*)
D.f(2n)>
(n∈N*)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2-4ax+1+b(a>0)的定义域为[2,3],值域为[1,4];设g(x)=
.
(1)求a,b的值;
(2)若不等式g(2x)-k2x≥0在x∈[1,2]上恒成立,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com