精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx=ax2-4ax+1+ba0)的定义域为[23],值域为[14];设gx=

1)求ab的值;

2)若不等式g2x-k2x≥0在x[12]上恒成立,求实数k的取值范围.

【答案】(1);(2)

【解析】

(1)根据函数f(x)=ax2-4ax+1+b(a>0)的定义域为[2,3],值域为[1,4],其图象对称轴为直线x=2,且g(x)的最小值为1,最大值为4,列出方程可得实数a,b的值; (2)若不等式g(2x)-k2x≥0在x∈[1,2]上恒成立,分离变量k,在x∈[1,2]上恒成立,进而得到实数k的取值范围.

(1函数fx=ax2-4ax+1+ba0)其图象对称轴为直线x=2
函数的定义域为[23],值域为[14]

解得:a=3b=12
2)由()得:fx=3x2-12x+13gx==
若不等式g2x-k2x≥0x[12]上恒成立,
k2-2+1x[12]上恒成立,
2x[24][],当=,即x=1时,(2-2+1取最小值
k

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为 (t为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ. (Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C相交于A、B两点,当α变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F. (Ⅰ)证明:B,C,G,F四点共圆;
(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=fx)图象上存在不同的两点AB关于y轴对称,则称点对[AB]是函数y=fx)的一对“黄金点对”(注:点对[AB][BA]可看作同一对“黄金点对”).已知函数fx=,则此函数的“黄金点对“有(  )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=-,若xRfx)满足f-x=-fx).

1)求实数a的值;

2)判断函数fx)(xR)的单调性,并说明理由;

3)若对任意的tR,不等式ft2-4t+f-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)若数列的前n项和,求数列的通项公式.

2)若数列的前n项和,证明为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b,c,d均为正数,且a+b=c+d,证明:
(1)若ab>cd,则 + +
(2) + + 是|a﹣b|<|c﹣d|的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某中学甲、乙两班共有25名学生报名参加了一项 测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同.

)求这两个班学生成绩的中位数及x的值;

)如果将这些成绩分为优秀(得分在175分 以上,包括175分)和过关,若学校再从这两个班获得优秀成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的可导函数的导函数为,满足,且为偶函数,,则不等式的解集为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案