【题目】【选修4-4:坐标系与参数方程】
极坐标系的极点为直角坐标系
的原点,极轴为
轴的正半轴,两神坐标系中的长度单位相同.已知曲线
的极坐标方程为
,
.
(Ⅰ)求曲线
的直角坐标方程;
(Ⅱ)在曲线
上求一点,使它到直线
:
(
为参数)的距离最短,写出
点的直角坐标.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),在以原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)求曲线
的普通方程和直线
的倾斜角;
(2)设点
,直线
和曲线
交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】韩国民意调查机构“盖洛普韩国”2016年11月公布的民调结果显示,受“闺蜜门”时间影响,韩国总统朴槿惠的民意支持率持续下跌,在所调查的1000个对象中,年龄在[20,30)的群体有200人,支持率为0%,年龄在[30,40)和[40,50)的群体中,支持率均为3%;年龄在[50,60)和[60,70)的群体中,支持率分别为6%和13%,若在调查的对象中,除[20,30)的群体外,其余各年龄层的人数分布情况如频率分布直方图所示,其中最后三组的频数构成公差为100的等差数列.
![]()
(1)依频率分布直方图求出图中各年龄层的人数
(2)请依上述支持率完成下表:
年龄分布 是否支持 | [30,40)和[40,50) | [50,60)和[60,70) | 合计 |
支持 | |||
不支持 | |||
合计 |
根据表中的数据,能否在犯错误的概率不超过0.001的前提下认为年龄与支持率有关?
附表:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中
参考数据:125×33=15×275,125×97=25×485)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018江西莲塘一中、临川二中高三上学期第一次联考】二次函数
的图象过原点,对
,恒有
成立,设数列
满足
.
(I)求证:对
,恒有
成立;
(II)求函数
的表达式;
(III)设数列
前
项和为
,求
的值.
【答案】(I)证明见解析;(II)
;(III)2018.
【解析】试题分析:
(1)左右两侧做差,结合代数式的性质可证得
,即对
,恒有:
成立;
(2)由已知条件可设
,给定特殊值,令
,从而可得:
,则
,
,从而有
恒成立,据此可知
,则
.
(3)结合(1)(2)的结论整理计算可得:
,据此分组求和有:
.
试题解析:
(1)
(仅当
时,取“=”)
所以恒有:
成立;
(2)由已知条件可设
,则
中,令
,
从而可得:
,所以
,即
,
又因为
恒成立,即
恒成立,
当
时,
,不合题意舍去,
当
时,即
,所以
,所以
.
(3)
,
所以
,
即
.
【题型】解答题
【结束】
22
【题目】已知函数
为定义在
上的奇函数.
(1)求函数
的值域;
(2)当
时,不等式
恒成立,求实数
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
与
轴负半轴相交于点
,与
轴正半轴相交于点
.
(1)若过点
的直线
被圆
截得的弦长为
,求直线
的方程;
(2)若在以
为圆心半径为
的圆上存在点
,使得
(
为坐标原点),求
的取值范围;
(3)设
是圆
上的两个动点,点
关于原点的对称点为
,点
关于
轴的对称点为
,如果直线
与
轴分别交于
和
,问
是否为定值?若是求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数
,其图象与
轴交于
,
两点,且
.
(Ⅰ)求
的取值范围;
(Ⅱ)证明:
(
为
的导函数).
(Ⅲ)设点
在函数
图象上,且
为等腰直角三角形,记
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是
,且各阶段通过与否相互独立.
(1)求该选手在复赛阶段被淘汰的概率;
(2)设该选手在竞赛中回答问题的个数为
,求
的分布列、数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com