精英家教网 > 高中数学 > 题目详情
8.已知数列{an}的前n项和Sn满足2an+1-Sn=0,且a1=1.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)求数列{nan}的前n项和Tn

分析 (I)利用递推关系与等比数列的通项公式即可得出;
(II)利用等比数列的前n项和公式、“错位相减法”即可得出.

解答 解:(I)∵2an+1-Sn=0,且a1=1.
∴当n≥2时,2an-Sn-1=0,可得2an+1-2an=an,∴an+1=$\frac{3}{2}$an

∴数列{an}是等比数列,公比为$\frac{3}{2}$,∴an=$(\frac{3}{2})^{n-1}$.
(II)nan=$n•(\frac{3}{2})^{n-1}$.
∴数列{nan}的前n项和Tn=1+2×$\frac{3}{2}$+3×$(\frac{3}{2})^{2}$+…+$n•(\frac{3}{2})^{n-1}$ ①,
$\frac{3}{2}$Tn=$\frac{3}{2}$+$2×(\frac{3}{2})^{2}$++…+(n-1)$•(\frac{3}{2})^{n-1}$+n$•(\frac{3}{2})^{n}$ ②,
由①-②得-$\frac{1}{2}{T}_{n}$=1+$\frac{3}{2}+(\frac{3}{2})^{2}$+…+$(\frac{3}{2})^{n-1}$-n$(\frac{3}{2})^{n}$=$\frac{1-(\frac{3}{2})^{n}}{1-\frac{3}{2}}$-n$(\frac{3}{2})^{n}$=(2-n)$•(\frac{3}{2})^{n}$-2,
∴Tn=(2n-4)$•(\frac{3}{2})^{n}$+4.

点评 本题考查了等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.与双曲线$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1有共同渐近线且焦距为12的双曲线的标准方程为$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{16}$=1,或$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{20}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集∪={1,2,3},集合B={1,2},且A∩B={1},则满足条件的集合A的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i为虚数单位,a∈R,若$\frac{2-i}{a+i}$为纯虚数,则复数z=2a+$\sqrt{2}$i的模等于(  )
A.$\sqrt{2}$B.$\sqrt{11}$C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设命题p:?x>0,sinx>2x-1,则¬p为(  )
A.?x>0,sinx≤2x-1B.?x>0,sinx<2x-1C.?x>0,sinx<2x-1D.?x>0,sinx≤2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=-x3+alnx-4(a∈R)若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为$\frac{π}{4}$,则a的值为(  )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示的程序框图,运行相应的程序,输出的S值为(  )
A.12B.24C.48D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面区域$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$内任取一点P(x,y),则(x,y)满足2x+y≤1的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.曲线f(x)=$\frac{2}{x}$+3x在点(1,f(1))处的切线方程为y=x+4.

查看答案和解析>>

同步练习册答案