精英家教网 > 高中数学 > 题目详情
18.与双曲线$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1有共同渐近线且焦距为12的双曲线的标准方程为$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{16}$=1,或$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{20}$=1.

分析 求出双曲线的渐近线方程,设所求双曲线的方程为y2-$\frac{4}{5}$x2=λ(λ≠0),讨论λ>0,λ<0,化为标准方程可得a,b,c,解方程可得所求方程.

解答 解:双曲线$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1的渐近线方程为y=±$\frac{2}{\sqrt{5}}$x,
设所求双曲线的方程为y2-$\frac{4}{5}$x2=λ(λ≠0),
当λ>0,可得$\frac{{y}^{2}}{λ}$-$\frac{{x}^{2}}{\frac{5}{4}λ}$=1,
即有c2=λ+$\frac{5}{4}$λ=36,解得λ=16,
即有双曲线的方程为$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{20}$=1;
当λ<0,可得$\frac{{x}^{2}}{-\frac{5}{4}λ}$-$\frac{{y}^{2}}{-λ}$=1,
即有c2=-λ-$\frac{5}{4}$λ=36,解得λ=-16,
即有双曲线的方程为$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{16}$=1.
故答案为:$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{16}$=1,或$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{20}$=1.

点评 本题考查双曲线的方程的求法,注意运用渐近线方程和分类讨论的思想方法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.化简:
(1)$\sqrt{1-sin2}+\sqrt{1+cos2}$;
(2)$\frac{1+sinθ-cosθ}{1+sinθ+cosθ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.①$\overrightarrow{a}$•$\overrightarrow{0}$=$\overrightarrow{0}$;②0•$\overrightarrow{a}$=0;③$\overrightarrow{0}$-$\overrightarrow{AB}$=$\overrightarrow{BA}$;④|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$||$\overrightarrow{b}$|⑤若$\overrightarrow{a}$≠0,则对任一非零向量$\overrightarrow{b}$都有$\overrightarrow{a}$$•\overrightarrow{b}$≠0;⑥$\overrightarrow{a}$$•\overrightarrow{b}$=0,则$\overrightarrow{a}$与$\overrightarrow{b}$中至少有一个为$\overrightarrow{0}$;⑦$\overrightarrow{a}$与$\overrightarrow{b}$是两个单位向量,则$\overrightarrow{a}$2=$\overrightarrow{b}$2
其中正确命题的序号是③⑦.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=|2x+1+$\frac{a}{{2}^{x}}$|在[-$\frac{1}{2}$,3]上单调递增,则实数a的取值范围是(  )
A.[0,1]B.[-1,1]C.[-1,2]D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={0,a,a2},且1∈A,则a=(  )
A.1B.-1C.±1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点为F1,F2,P是双曲线上异于实轴端点的点,满足ctan∠PF1F2=atan∠PF2F1,则双曲线的离心率e的取值范围是(  )
A.(1+$\sqrt{2}$,1+$\sqrt{3}$)B.(1+$\sqrt{2}$,+∞)C.($\sqrt{2}$,1+$\sqrt{2}$)D.(1,1+$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是定义在R上的可导函数,f′(x)为其导函数,若对于任意实数x,有f(x)-f′(x)>0,则(  )
A.ef(2015)>f(2016)B.ef(2015)<f(2016)
C.ef(2015)=f(2016)D.ef(2015)与f(2016)大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{πcosx,x<0}\\{f(x-π),x≥0}\end{array}\right.$,则函数g(x)=sin[2x-f($\frac{2π}{3}$)]的一个单调递增区间为(  )
A.[0,$\frac{π}{2}$]B.[$\frac{π}{2}$,π]C.[$\frac{π}{4}$,$\frac{3π}{4}$]D.[$\frac{3π}{4}$,$\frac{5π}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和Sn满足2an+1-Sn=0,且a1=1.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)求数列{nan}的前n项和Tn

查看答案和解析>>

同步练习册答案