精英家教网 > 高中数学 > 题目详情
3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点为F1,F2,P是双曲线上异于实轴端点的点,满足ctan∠PF1F2=atan∠PF2F1,则双曲线的离心率e的取值范围是(  )
A.(1+$\sqrt{2}$,1+$\sqrt{3}$)B.(1+$\sqrt{2}$,+∞)C.($\sqrt{2}$,1+$\sqrt{2}$)D.(1,1+$\sqrt{2}$)

分析 由题意可得e=$\frac{c}{a}$=$\frac{tan∠P{F}_{2}{F}_{1}}{tan∠P{F}_{1}{F}_{2}}$,设P(m,n)为双曲线的右支上一点,由F1(-c,0),F2(-c,0),运用直线的斜率公式和m>a,解不等式即可得到所求范围.

解答 解:由ctan∠PF1F2=atan∠PF2F1
可得e=$\frac{c}{a}$=$\frac{tan∠P{F}_{2}{F}_{1}}{tan∠P{F}_{1}{F}_{2}}$,
设P(m,n)为双曲线的右支上一点,
由F1(-c,0),F2(-c,0),
可得$\frac{tan∠P{F}_{2}{F}_{1}}{tan∠P{F}_{1}{F}_{2}}$=-$\frac{n}{m-c}$•$\frac{m+c}{n}$=-$\frac{m+c}{m-c}$=-1-$\frac{2c}{m-c}$,
由m>a可得-1-$\frac{2c}{m-c}$>-1+$\frac{-2c}{a-c}$=-1+$\frac{2e}{e-1}$,
即有e+1>$\frac{2e}{e-1}$,即e2-2e-1>0,解得e>1+$\sqrt{2}$.
故选:B.

点评 本题考查双曲线的离心率的范围,注意运用直线的斜率公式和双曲线的范围,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知x>0,y>0,且x=4xy-2y,则3x+2y的最小值为2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(cosωx,sinωx),$\overrightarrow{b}$=(cosωx,$\sqrt{3}$cosωx),其中ω>0,设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)若函数f(x)的最小正周期是π,求函数f(x)的单调递增区间;
(2)若函数f(x)的图象的一个对称中心的横坐标为$\frac{π}{6}$,求ω的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样抽取容量为45的样本,则在高三年级抽取的人数是(  )
A.25B.24C.22D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.与双曲线$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1有共同渐近线且焦距为12的双曲线的标准方程为$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{16}$=1,或$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{20}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知双曲线C的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),离心率e=$\frac{\sqrt{13}}{2}$.
(1)求双曲线C的渐近线方程;
(2)若A,B分别是两条渐近线上的点,AB是位于第一、四象限间的动弦,△A0B的面积为定值$\frac{27}{4}$,且双曲线C经过AB的一个三等分点P,如图,试求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知sinα=2cosα,则$cos(\frac{2015π}{2}-2α)$的值为$-\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知(1-x)(1+2x)5,x∈R,则x2的系数为(  )
A.50B.20C.30D.40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=-x3+alnx-4(a∈R)若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为$\frac{π}{4}$,则a的值为(  )
A.-2B.2C.-4D.4

查看答案和解析>>

同步练习册答案