精英家教网 > 高中数学 > 题目详情
15.已知sinα=2cosα,则$cos(\frac{2015π}{2}-2α)$的值为$-\frac{4}{5}$.

分析 由已知利用同角三角函数基本关系式可求tanα,利用诱导公式,二倍角的正弦函数公式,同角三角函数基本关系式化简所求即可计算得解.

解答 解:∵sinα=2cosα,∴tanα=2,
∴$cos(\frac{2015π}{2}-2α)$=cos(π+$\frac{π}{2}$-2α)=-sin2α=-$\frac{2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=-$\frac{2tanα}{ta{n}^{2}α+1}$=-$\frac{2×2}{{2}^{2}+1}$=$-\frac{4}{5}$.
故答案为:$-\frac{4}{5}$.

点评 本题主要考查了诱导公式,二倍角的正弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知$\frac{sinα-cosα}{sinα+cosα}$=$\frac{1}{3}$,则cos4($\frac{π}{3}$+α)-cos4($\frac{π}{6}$-α)的值为(  )
A.$\frac{3+4\sqrt{3}}{10}$B.$\frac{4+3\sqrt{3}}{10}$C.$\frac{3-4\sqrt{3}}{10}$D.$\frac{4-3\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=|2x+1+$\frac{a}{{2}^{x}}$|在[-$\frac{1}{2}$,3]上单调递增,则实数a的取值范围是(  )
A.[0,1]B.[-1,1]C.[-1,2]D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点为F1,F2,P是双曲线上异于实轴端点的点,满足ctan∠PF1F2=atan∠PF2F1,则双曲线的离心率e的取值范围是(  )
A.(1+$\sqrt{2}$,1+$\sqrt{3}$)B.(1+$\sqrt{2}$,+∞)C.($\sqrt{2}$,1+$\sqrt{2}$)D.(1,1+$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是定义在R上的可导函数,f′(x)为其导函数,若对于任意实数x,有f(x)-f′(x)>0,则(  )
A.ef(2015)>f(2016)B.ef(2015)<f(2016)
C.ef(2015)=f(2016)D.ef(2015)与f(2016)大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设变量x,y满足约束条件$\left\{{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}}\right.$,则z=x-3y的取值范围是[-4,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{πcosx,x<0}\\{f(x-π),x≥0}\end{array}\right.$,则函数g(x)=sin[2x-f($\frac{2π}{3}$)]的一个单调递增区间为(  )
A.[0,$\frac{π}{2}$]B.[$\frac{π}{2}$,π]C.[$\frac{π}{4}$,$\frac{3π}{4}$]D.[$\frac{3π}{4}$,$\frac{5π}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列命题中真命题的个数是(  )
①若命题p为真,命题?q为真,则命题p且q为真;
②命题“若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$”的逆命题是真命题;
③命题“?x∈(0,+∞),x3+x-3>2”的否定是“?x∉(0,+∞),x3+x-3≤2.
A.0个B.1个C.2个D.3 个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数$f(x)=\sqrt{3}cos2x-sin2x$的图象是由函数y=2sin2x的图象按照向量$\overrightarrow a$平移得到的,则f(x)的周期为π,$\overrightarrow a$==(-$\frac{π}{3}$,0).

查看答案和解析>>

同步练习册答案