分析 由已知利用同角三角函数基本关系式可求tanα,利用诱导公式,二倍角的正弦函数公式,同角三角函数基本关系式化简所求即可计算得解.
解答 解:∵sinα=2cosα,∴tanα=2,
∴$cos(\frac{2015π}{2}-2α)$=cos(π+$\frac{π}{2}$-2α)=-sin2α=-$\frac{2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=-$\frac{2tanα}{ta{n}^{2}α+1}$=-$\frac{2×2}{{2}^{2}+1}$=$-\frac{4}{5}$.
故答案为:$-\frac{4}{5}$.
点评 本题主要考查了诱导公式,二倍角的正弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3+4\sqrt{3}}{10}$ | B. | $\frac{4+3\sqrt{3}}{10}$ | C. | $\frac{3-4\sqrt{3}}{10}$ | D. | $\frac{4-3\sqrt{3}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,1] | B. | [-1,1] | C. | [-1,2] | D. | (-∞,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1+$\sqrt{2}$,1+$\sqrt{3}$) | B. | (1+$\sqrt{2}$,+∞) | C. | ($\sqrt{2}$,1+$\sqrt{2}$) | D. | (1,1+$\sqrt{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ef(2015)>f(2016) | B. | ef(2015)<f(2016) | ||
| C. | ef(2015)=f(2016) | D. | ef(2015)与f(2016)大小不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{π}{2}$] | B. | [$\frac{π}{2}$,π] | C. | [$\frac{π}{4}$,$\frac{3π}{4}$] | D. | [$\frac{3π}{4}$,$\frac{5π}{4}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3 个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com