精英家教网 > 高中数学 > 题目详情
11.某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样抽取容量为45的样本,则在高三年级抽取的人数是(  )
A.25B.24C.22D.20

分析 求出高三的人数,再根据分层抽样方法的特征,即可求出高三应抽出的人数.

解答 解:高三的人数为900-240-260=400人,
所以高三抽出的人数为400×$\frac{45}{900}$=20人.
故选:D.

点评 本题考查了分层抽样方法的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设集合A={1,2,4,5,6},B={4,5,6,7},求满足S⊆A.且S∩B≠∅的集合的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数f(x)=$\frac{1}{2}$sin2xsin$\frac{π}{3}$+cos2xcos$\frac{π}{3}$$-\frac{1}{2}$sin($\frac{π}{2}+\frac{π}{3}$)的图象上各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象,则函数g(x)在[0,$\frac{π}{4}$]上的最大值和最小值分别为(  )
A.$\frac{1}{2}$,$-\frac{1}{2}$B.$\frac{1}{4}$,$-\frac{1}{4}$C.$\frac{1}{2}$,-$\frac{1}{4}$D.$\frac{1}{4}$,-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.sin240°+sin220°+sin40°•sin20°的值为(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=|2x+1+$\frac{a}{{2}^{x}}$|在[-$\frac{1}{2}$,3]上单调递增,则实数a的取值范围是(  )
A.[0,1]B.[-1,1]C.[-1,2]D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U={1,2,3,4,5},集合A=(1,2,5},∁UB=(1,3,5},则A∩B=(  )
A.{2}B.{5}C.{1,2,4,5}D.{3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点为F1,F2,P是双曲线上异于实轴端点的点,满足ctan∠PF1F2=atan∠PF2F1,则双曲线的离心率e的取值范围是(  )
A.(1+$\sqrt{2}$,1+$\sqrt{3}$)B.(1+$\sqrt{2}$,+∞)C.($\sqrt{2}$,1+$\sqrt{2}$)D.(1,1+$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设变量x,y满足约束条件$\left\{{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}}\right.$,则z=x-3y的取值范围是[-4,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}的各项均为正数,{an}的前n项和${S_n}=\frac{1}{4}{({{a_n}+1})^2}$,n∈N*
(1)求证:数列{an}为等差数列;
(2)等比数列{bn}的各项均为正数,${b_n}{b_{n+1}}≥{S_n}^2$,n∈N*,且存在整数k≥2,使得${b_k}{b_{k+1}}={S_k}^2$.
(i)求数列{bn}公比q的最小值(用k表示);
(ii)当n≥2时,${b_n}∈{N^*}$,求数列{bn}的通项公式.

查看答案和解析>>

同步练习册答案