精英家教网 > 高中数学 > 题目详情

已知中,角的对边分别为,且满足.
(I)求角的大小;
(Ⅱ)设,求的最小值.

(I);(Ⅱ)当时,取得最小值为0.

解析试题分析:(I)利用正弦定理或余弦定理,将已知式化为:,再利用三角函数相关公式(两角和的正弦公式、诱导公式等),结合三角形内角和定理将其化简,即可求得角的大小;(Ⅱ)由已知及平面向量的数量积计算的坐标公式,可得的函数关系式:.由(I),,从而,只需求函数的最小值即可.
试题解析:(I)由正弦定理
,                         2分
代入.             4分
.
.       6分
.                         7分
.                                 8分
(Ⅱ),                                10分
,得.                                11分
所以,当时,取得最小值为0.                         12分
考点:1.利用正弦定理、余弦定理解三角形;2.平面向量的数量积运算;3.三角函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期和对称轴的方程;
(2)设的角的对边分别为,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数
(1)求的最大值,并求取最大值时的取值集合;
(2)已知 分别为内角的对边,且成等比数列,角为锐角,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在海岸线一侧C处有一个美丽的小岛,某旅游公司为方便游客,在上设立了A、B两个报名点,满足A、B、C中任意两点间的距离为10千米。公司拟按以下思路运作:先将A、B两处游客分别乘车集中到AB之间的中转点D处(点D异于A、B两点),然后乘同一艘游轮前往C岛。据统计,每批游客A处需发车2辆,B处需发车4辆,每辆汽车每千米耗费2元,游轮每千米耗费12元。设∠,每批游客从各自报名点到C岛所需运输成本S元。

⑴写出S关于的函数表达式,并指出的取值范围;
⑵问中转点D距离A处多远时,S最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知,又的面积等于6.
(Ⅰ)求的三边之长;
(Ⅱ)设(含边界)内一点,到三边的距离分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知,求边的长及的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位有三个工作点,需要建立一个公共无线网络发射点,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为.假定四点在同一平面内.
(Ⅰ)求的大小;
(Ⅱ)求点到直线的距

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,其中ω>0,函数,若相邻两对称轴间的距离为
(1)求ω的值;
(2)在△ABC中,a、b、c分别是A、B、C所对的边,,△ABC的面积S=5,b=4,,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,设函数+1
(1)若,求的值;
(2)在△ABC中,角A,B,C的对边分别是,且满足,求
的取值范围.

查看答案和解析>>

同步练习册答案