精英家教网 > 高中数学 > 题目详情

【题目】为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,

(1)求图中的值并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;

(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及均值.

【答案】(1) ,年龄在岁的人数为;(2)答案见解析.

【解析】试题分析:(I)由直方图求出x,即可求出年龄在[35,40)岁的人数;(II)用分层抽样的方法,从中选取20名,则其中年龄低于35的人有12名,年龄不低于35的人有8名.计算出总的基本事件数与事件包含的基本事件数即可得出概率.

解析:

(1)∵小矩形的面积等于频率,

∴除外的频率和为0.70,

.

故500名志愿者中,年龄在岁的人数为(人).

(2)用分层抽样的方法,从中选取20名,则其中年龄“低于35岁”的人有12名,“年龄不低于35岁”的人有8名.

的可能取值为0,1,2,3,

的分布列为

X

0

1

2

3

P

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的标准方程是.

(1)求它的焦点坐标和准线方程;

(2)直线过已知抛物线的焦点且倾斜角为45°,且与抛物线的交点为,求的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为,第七个音的频率为,则

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1与圆C2相交于AB两点,

(1)求公共弦AB所在的直线方程;

(2)求圆心在直线上,且经过AB两点的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥D﹣ABC侧棱两两垂直,E为棱AD中点,平面α过点A,且α∥平面EBC,α∩平面ABC=m,α∩平面ACD=n,则m,n所成角的余弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆过点,直线轴于,且为坐标原点.

1)求椭圆的方程;

2)设是椭圆的上顶点,过点分别作直线交椭圆两点,设这两条直线的斜率分别为,且,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1,其前n项和为Sn,且Snan+1 (n∈N*).

(1)求anSn

(2)设bn=log2(2Sn+1)-2,数列{cn}满足cn·bn+3·bn+4=1+(n+1)(n+2)·2bn,数列{cn}的前n项和为Tn,求使4Tn>2n+1成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 如图,在四棱锥P﹣ABCD中,侧面PAD底面ABCD,侧棱PA=PD= ,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1) 求直线PB与平面POC所成角的余弦值;

(2)线段上是否存在一点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,点在直线上.数列 满足 ,且,前11项和为.

(1)求数列的通项公式;

(2)设是否存在,使得成立?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案