精英家教网 > 高中数学 > 题目详情
6.如图,网格纸上小正方形的边长为1,粗实线和虚线画出的是多面体的三视图,则该多面体的体积为(  )
A.$\frac{64}{3}$B.$\frac{32}{3}$C.$\frac{64}{3}$或32D.$\frac{32}{3}$或$\frac{64}{3}$

分析 由三视图知该几何体正四面体或五面体,且是棱长为2的正方体的一部分,画出直观图后,由正方体的性质求出该多面体的体积.

解答 解由三视图知该几何体为正四面体P-ACF或几何体PFADC,
直观图如图所示:
则正四面体P-ACF是棱长为4的正方体的一部分,
由正方体的性质得,
三棱锥F-ABC的体积V三棱锥F-ABC=$\frac{1}{3}×\frac{1}{2}×4×4×4$=$\frac{32}{3}$,
∴正四面体P-ACF的体积V=4×4×4-4•V三棱锥F-ABC
=64-4×$\frac{32}{3}$=$\frac{64}{3}$,
该多面体的体积V=4×4×4-3•V三棱锥F-ABC
=64-3×$\frac{32}{3}$=32,
∴该多面体的体积为$\frac{64}{3}$或32,
故选C.

点评 本题考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,已知AB=AC,圆O是△ABC的外接圆,CD⊥AB,CE是圆O的直径.过点B作圆O的切线交AC的延长线于点F.
(Ⅰ)求证:AB•CB=CD•CE;
(Ⅱ)若$BC=\sqrt{2}$,$BF=2\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一几何体的三视图如图所示,若将该几何体切割成长方体,则长方体的最大体积与该几何体的体积之比为(  )
A.$\frac{2}{3}$B.$\frac{36}{41}$C.$\frac{18}{23}$D.$\frac{9}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,某房产开发商计划在一正方形土地ABCD内建造一个三角形住宅区,在其余土地种植绿化,住宅区形状为三角形APQ,其中P位于边CB上,Q位于边CD上.已知,∠PAQ=$\frac{π}{4}$,设∠PAB=θ,记绿化率L=1-$\frac{△PAQ面积}{正方形ABCD面积}$,若L越大,则住宅区绿化越好.
(1)求L(θ)关于θ的函数解析式;
(2)问当θ取何值时,L有最大值?并求出L的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知四面体P-ABC的各边长都为12,且各顶点都在球O上,则球心O到平面ABC的距离为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图是一个三棱锥的三视图,则该三棱锥的外接球的表面积为(  )
A.$\frac{\sqrt{3}}{2}$πB.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.运行如图程序,输出结果S为(  )
A.-1B.0C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=ax3+x+b是奇函数,且f(x)图象在点(1,f(1))的处的切线过点(2,6),则 a+b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{2}{x}$+3lnx,g(x)=x+a(a∈R).
(Ⅰ)求曲线y=f(x)在点(1,2)处的切线方程;
(Ⅱ)若方程f(x)=g(x)有唯一解,试求实数a的取值范围.

查看答案和解析>>

同步练习册答案