分析 由f(x)为奇函数,可得f(0)=0,即b=0,求得f(x)的导数,可得切线的斜率和切点,切线的方程,代入点(2,6),求得a=1,即可得到所求和.
解答 解:由函数f(x)=ax3+x+b是奇函数,
得f(0)=0,从而b=0,
f(x)=ax3+x的导数f'(x)=3ax2+1,
在(1,f(1))处的切线斜率为3a+1,切点为(1,a+1),
方程为y-(a+1)=(3a+1)(x-1),
由已知切线过点(2,6),
代入可得6-a-1=3a+1,
解得a=1,则a+b=1.
故答案为:1.
点评 本题考查函数的奇偶性的运用:求参数的值,导数的运用:求切线的方程,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{64}{3}$ | B. | $\frac{32}{3}$ | C. | $\frac{64}{3}$或32 | D. | $\frac{32}{3}$或$\frac{64}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 椭圆 | B. | 圆 | C. | 抛物线 | D. | 双曲线 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 原料 种类 | 磷酸盐(单位:吨) | 硝酸盐(单位:吨) |
| 甲 | 4 | 20 |
| 乙 | 2 | 20 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com