精英家教网 > 高中数学 > 题目详情
若抛物线y2=4x上的两点A、B到焦点的距离之和为6,则线段AB的中点到y轴的距离为
 
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点横坐标的和,求出线段AB的中点到y轴的距离.
解答: 解:∵F是抛物线y2=4x的焦点
∴F(1,0),准线方程x=-1
设A(x1,y1),B(x2,y2
∴|AF|+|BF|=x1+1+x2+1=6
∴x1+x2=4,
∴线段AB的中点横坐标为2,
∴线段AB的中点到y轴的距离为2,
故答案为:2
点评:本题考查解决抛物线上的点到焦点的距离问题,解题的关键是利用抛物线的定义将到焦点的距离转化为到准线的距离.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}满足a1=1,a2=
1
2
,并且{an}满足an(an-1+an+1)=2an+1an-1(n≥2)则数列{an}的第2014项为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ADE-BCF中,面ABFE和面ABCD都是正方形且互相垂直,M为AB的中点,O为DF的中点,运动向量方法证明:
(1)OM∥平面BCF;
(2)平面MDF⊥平面EFCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(2,1),B(1,-2),C(
3
5
,-
1
5
),动点P(a,b)满足0≤
OP
OA
≤2且0≤
OP
OB
≤2,则点P到点C的距离大于
1
4
的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-
2
,0),B(
2
,0),且动点P满足|PA|-|PB|=2,则动点P的轨迹与直线y=k(x-2)有两个交点的充要条件为k∈
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2-ax+2a=0的两个根均大于1,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个结论中,
①命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0,则x=1”;
②若p∧q为假命题,则p,q均为假命题;
③若命题p:?x0∈R,使得x02+2x0+3<0,则¬p:?x∈R,都有x2+2x+3≥0;
④设
a
b
为两个非零向量,则“
a
b
=|
a
|•|
b
|”是“a与b共线”的充分必要条件;
正确结论的序号是的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数f(x)=
sin2x+sinx
sinx+1
是奇函数;
②函数f(x)=1既是奇函数又是偶函数;
③函数y=(
1
3
)x
与y=-l0g3x的图象关于直线y=x对称;
④若y=f(x)是定义在R上的函数,则y=f(1+x)与y=f(1-x)的图象关于y轴对称.
其中正确命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

写出由下述各命题构成的“p或q”,“p且q”,“非p”形式的命题,并指出所构成的这些命题的真假.
(1)p:连续的三个整数的乘积能被2整除,q:连续的三个整数的乘积能被3整除;
(2)p:对角线互相垂直的四边形是菱形,q:对角线互相平分的四边形是菱形.

查看答案和解析>>

同步练习册答案