【题目】在矩形中, 动点在以点为圆心且与相切的圆上,若,则的最大值为( )
A. B. C. D.
【答案】A
【解析】如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,
则A(0,0),B(1,0),D(0,2),C(1,2),
∵动点P在以点C为圆心且与BD相切的圆上,
设圆的半径为r,
∵BC=2,CD=1,
∴BD==
∴BCCD=BDr,
∴r=,
∴圆的方程为(x﹣1)2+(y﹣2)2=,
设点P的坐标为(cosθ+1, sinθ+2),
∵,
∴(cosθ+1, sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ),
∴cosθ+1=λ, sinθ+2=2μ,
∴λ+μ=cosθ+sinθ+2=sin(θ+φ)+2,其中tanφ=2,
∵﹣1≤sin(θ+φ)≤1,
∴1≤λ+μ≤3,
故λ+μ的最大值为3,
故选:A
科目:高中数学 来源: 题型:
【题目】某校从高一年级学生中随机抽取40中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段: , ,…, 所得到如图所示的频率分布直方图.
(1)求图中实数的值;
(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;
(3)若从数学成绩在与两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知左、右焦点分别为的椭圆与直线相交于两点,使得四边形为面积等于的矩形.
(1)求椭圆的方程;
(2)过椭圆上一动点(不在轴上)作圆的两条切线,切点分别为,直线与椭圆交于两点, 为坐标原点,求的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求证:直线BD1∥平面PAC;
(2)求证:平面PAC⊥平面BDD1B1;
(3)求CP与平面BDD1B1所成的角大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA= acosB.
(1)求角B的大小;
(2)若b=3,sinC=2sinA,分别求a和c的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com