精英家教网 > 高中数学 > 题目详情
8.设随机变量ξ服从正态分布N(0,1),若P(ξ>2)=p,则P(-2<ξ<0)(  )
A.$\frac{1}{2}$+PB.1-PC.$\frac{1}{2}$-PD.1-2P

分析 由图象的对称性可得,图象关于x=1对称,利用P(ξ>2)=p,可得结果.

解答 解:由图象的对称性可得,图象关于x=1对称.
若P(ξ>2)=p,则P(ξ<-2)=p,
∴P(-2<ξ<0)=$\frac{1}{2}$-p.
故选:C.

点评 本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.民乐乐团筹备了一场新年音乐会,12月31日在中山音乐礼堂演出,并对外售票,成人票5元,学生票3元,假设有n个成人和m个学生参加新年音乐会,其设计算法框图,完成售票计费工作,要求输出最后的票房收入.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆O:x2+y2=4与x轴交于点A和B,P(异于A,B)是圆O上的动点,PD⊥AB交AB与D,PE=$\frac{1}{3}$ED,直线PA与BE交于点C,点C的轨迹方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$(x≠±2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某网络机构公布某单位关于上网者使用网络浏览器A、B的信息:
①316人使用A;
②478人使用B;
③104人同时使用A和B;
④567人只使用A、B中的一种网络浏览器.
则这条信息为假(填“真”或“假”),理由是由①②③知只使用一种浏览器的人数为:316-104+478-104=586.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,若输出s的值为22,那么输入的n值等于(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,其两个焦点与短轴的一个顶点是正三角形的三个顶点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)动点P在椭圆C上,直线l:x=4与x轴交于点N,PM⊥l于点M(M,N不重合),试问在x轴上是否存在定点T,使得∠PTN的平分线过PM中点,如果存在,求定点T的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点A为抛物线C:x2=4y上的动点(不含原点),过点A的切线交x轴于点B,设抛物线C的焦点为F,则△ABF(  )
A.一定是直角B.一定是锐角
C.一定是钝角D.上述三种情况都可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某餐厅的每天原料费支出x与该天的营业额y(单位:万元)之间具有相关关系,其线性回归方程为$\widehaty$=1.5x+3,已知某天此餐厅的营业额为6万元,则其当天原料费开支(  )
A.恰为12万元B.近似为12万元C.恰为2万元D.近似为2万元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设角α、β是锐角,若(1+tanα)(1+tanβ)=2,则α+β=$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案