精英家教网 > 高中数学 > 题目详情
5.民乐乐团筹备了一场新年音乐会,12月31日在中山音乐礼堂演出,并对外售票,成人票5元,学生票3元,假设有n个成人和m个学生参加新年音乐会,其设计算法框图,完成售票计费工作,要求输出最后的票房收入.

分析 若n个成人,m个学生,最后收入为S,则S=5n+3m,输出S即可.

解答 解:若n个成人,m个学生,最后收入为S,
故框图如下:

故程序语句如下:
INPUT“成人人数,学生人数”;n,m,
S=5n+3m
PRINT“最后收入为:”;S
END

点评 本题考查的知识点是设计程序框图解决实际问题,是顺序结构的简单应用,难度不大,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知an+1=$\frac{2{a}_{n}}{1+{a}_{n}}$,若a1=$\frac{1}{2}$
(1)求a2,a3,a4,a5的值,并猜想an的表达式;
(2)并用数学归纳法证明(1)中的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线$\left\{\begin{array}{l}x=2+t\\ y=1+t\end{array}\right.$(t为参数)与曲线M:ρ=2cosθ交于P,Q两点,则|PQ|=(  )
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,平面四边形ABCD中,角∠A+∠C=180°,且AB=3,BC=CD=7,DA=5.
(Ⅰ)求∠C;
(Ⅱ)求四边形ABCD的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=sin(2x-$\frac{π}{6}$)-2cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+2cos2x(x∈R),则函数f(x)在[0,$\frac{π}{2}$]上的值域为[-$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)=x+xlnx,若k∈z,且k(x-2)<f(x)对任意x>2恒成立,则k的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=$\frac{{a}^{2}+asinx+2}{{a}^{2}+acosx+2}$(x∈R)的最大值为M(a),最小值为m(a),则(  )
A.?a∈R,M(a)•m(a)=1B.?a∈R,M(a)+m(a)=2C.?a0∈R,M(a0)+m(a0)=1D.?a0∈R,M(a0)•m(a0)=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.等比数列{an},a1=$\frac{1}{2}$,且a1,a2,a3-$\frac{1}{8}$成等差数列.求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设随机变量ξ服从正态分布N(0,1),若P(ξ>2)=p,则P(-2<ξ<0)(  )
A.$\frac{1}{2}$+PB.1-PC.$\frac{1}{2}$-PD.1-2P

查看答案和解析>>

同步练习册答案