分析 (Ⅰ)由余弦定理及∠C+∠A=180°,可解得$cosC=\frac{1}{2}$,结合C∈(0°,180°),即可求得∠C的值.
(Ⅱ)由三角形面积公式,分别求得得△CBD,△ABD的面积,相加即可求得四边形ABCD的面积.
解答 解:(Ⅰ)由余弦定理得:BD2=CD2+CB2-2CD•CBcosC=AB2+AD2-2AB•ADcosA
∵∠C+∠A=180°,
∴72+72-2×7×7cosC=32+52+2×3×5cosC⇒$cosC=\frac{1}{2}$,
∵C∈(0°,180°),
∴∠C=60°.…6分
(Ⅱ)由三角形面积公式,得:${S_{△CBD}}=\frac{1}{2}CB•CDsinC=\frac{7×7}{2}•\frac{{\sqrt{3}}}{2}=\frac{{49\sqrt{3}}}{4}$,
${S_{△ABD}}=\frac{1}{2}AB•ADsinA=\frac{3×5}{2}•\frac{{\sqrt{3}}}{2}=\frac{{15\sqrt{3}}}{4}$
故四边形ABCD的面积 $S=\frac{{49\sqrt{3}}}{4}+\frac{{15\sqrt{3}}}{4}=16\sqrt{3}$.…12分.
点评 本题考查余弦定理、三角形面积公式等基础知识,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $(-∞,\frac{1}{2}]$ | B. | $(-∞,\frac{{\sqrt{2}}}{2}]$ | C. | $(-∞,\sqrt{2}]$ | D. | (-∞,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1] | B. | [1,+∞) | C. | [0,1] | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $3+2\sqrt{2}$ | B. | $\frac{{3+2\sqrt{2}}}{4}$ | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com