分析 由题设条件知anlgxn=an+1lgxn+1=an+2lgxn+2.设anlgxn=an+1lgxn+1=an+2lgxn+2=p,有$\frac{2p}{{a}_{n+1}}$=$\frac{p}{{a}_{n}}$+$\frac{p}{{a}_{n+2}}$,由此导出xn+12=xnxn+2,所以数列{xn}是等比数列,再根据等比数列的定义,求出通项即可.
解答 解:∵数列{xn}中各项都是正数,
∴anlgxn=an+1lgxn+1=an+2lgxn+2.
设anlgxn=an+1lgxn+1=an+2lgxn+2=p,
∴$\frac{p}{{a}_{n}}$=lgxn,$\frac{p}{{a}_{n+1}}$=lgxn+1,$\frac{p}{{a}_{n+2}}$=lgxn+2,
∵{an}的各项取倒数后按原来顺序构成等差数列,故an≠0,
∴$\frac{2p}{{a}_{n+1}}$=$\frac{p}{{a}_{n}}$+$\frac{p}{{a}_{n+2}}$.
∴2lgxn+1=lgxn+lgxn+2,
∴lgxn+12=lg(xnxn+2).
∴xn+12=xnxn+2,
∴数列{xn}是等比数列.
设{xn}的公比为q,x1+x2+x3=14,x1=2,
∴2+2q+2q2=14,
解得q=2,或q=-3(舍去),
∴xn=2×2n-1=2n.
故答案为:2n.
点评 本题考查了数列的通项公式的求法,求证{xn}为等比数列是解决本题的关键,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 21006 | D. | 21007 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 6 | C. | 9 | D. | $\sqrt{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,$\sqrt{2}$) | B. | $({1,\sqrt{2}}]$ | C. | $({1,\sqrt{2}+1}]$ | D. | $(1,\sqrt{2}+1)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com