精英家教网 > 高中数学 > 题目详情
20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别F1(-c,0),F2(c,0),若双曲线上存在点P,使得csin∠PF1F2=asin∠PF2F1≠0,则该曲线的离心率e的取值范围是(  )
A.(1,$\sqrt{2}$)B.$({1,\sqrt{2}}]$C.$({1,\sqrt{2}+1}]$D.$(1,\sqrt{2}+1)$

分析 不防设点P(x,y)在右支曲线上,并注意到x≥a.利用正弦定理求得$\frac{sin∠P{F}_{1}{F}_{2}}{sin∠P{F}_{2}{F}_{1}}=\frac{P{F}_{2}}{P{F}_{1}}$,进而根据双曲线定义表示出|PF1|和|PF2|代入,可求得e的范围.

解答 解:不妨设P(x,y)在右支曲线上,此时x≥a,
由正弦定理得$\frac{sin∠P{F}_{1}{F}_{2}}{sin∠P{F}_{2}{F}_{1}}=\frac{P{F}_{2}}{P{F}_{1}}$,所以$\frac{P{F}_{2}}{P{F}_{1}}$=$\frac{a}{c}$,
∵双曲线第二定义得:|PF1|=a+ex,|PF2|=ex-a,
∴$\frac{ex-a}{ex+a}$=$\frac{a}{c}$⇒x=$\frac{a(a+c)}{ec-ea}$>a,
分子分母同时除以a,得:$\frac{a+c}{{e}^{2}-e}$>a,
∴$\frac{1+e}{{e}^{2}-e}$>1解得1<e<$\sqrt{2}$+1,
故答案为:D.

点评 本题主要考查了双曲线的应用.考查了学生综合运用所学知识解决问题能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设集合A={(x,y)|x2+y2=1},B={(x,y)|x=1},则A∩B子集的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列{an}是调和数列,对于各项都是正数的数列{xn},满足x1=2,x1+x2+x3=14,${({x}_{n})}^{{a}_{n}}$=${({x}_{n+1})}^{{a}_{n+1}}$=${({x}_{n+2})}^{{a}_{n+2}}$(x∈N+),则数列{xn}的通项公式为2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x2-1|+x2+kx,x∈[0,2].
(1)求关于x的方程f(x)=kx+3在区间[0,2]上的解;
(2)若f(x)在其定义域上的最大值为9,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a>0,若?x0∈R,使得|x0-a|+|x0-$\frac{2}{a}$|≤1,则a的取值范围是[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求(3x+$\frac{1}{\sqrt{x}}$)5的展开式中含有x的整数次幂的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在四面体S-ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,则该四面体外接球的表面积是$\frac{40}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.2016年欧洲杯将于2016年6月10日到7月10日在法国举行.为了使得赛会有序进行,欧足联在全球范围内选聘了30名志愿者(其中男性16名,女性14名).调查发现,男性中有10人会英语,女性中有6人会英语.
(1)根据以上数据完成以下2×2列联表:
会英语不会英语总计
男性10616
女性6814
总计161430
并回答能否在犯错的概率不超过0.10的前提下认为性别与会英语有关?
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(K2≥k00.400.250.100.010
k00.7081.3232.7066.635
(2)会英语的6名女性志愿者中曾有4人在法国工作过,若从会英语的6名女性志愿者中随机抽取2人做导游,则抽出的2人都在法国工作过的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=asinx+cosx,其中a>0.
(Ⅰ)当a≥1时,判断f(x)在区间[0,$\frac{π}{4}$]上的单调性;
(Ⅱ)当0<a<1时,若不等式$\frac{2a}{\sqrt{{a}^{2}+1}}$f(x)<t2+at+2对于x∈[0,$\frac{π}{4}$]恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案