精英家教网 > 高中数学 > 题目详情
1.在一个数列中,如果对任意n∈N+,都有anan+1an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=2,公积为8,记{an}的前n项和为Sn,则:
(1)a5=2.
(2)S2015=4700.

分析 根据“等积数列”的概念,求出前几项的值,找出其具有周期性的规律,利用数列的求和公式即可求得答案.

解答 解:∵数列{an}是等积数列,且a1=1,a2=2,公积为8,
∴a1•a2•a3=8,即1×2a3=8,
∴a3=4.
同理可求a4=1,a5=2,a6=4,…
∴{an}是以3为周期的数列,
∴a1+3k+a2+3k+a3+3k=1+2+4=7,
∵2015=671×3+2,
∴S2015=671×7+1+2=4700.
故答案分别为:2,4700.

点评 本题考查数列的求和,求得{an}是以3为周期的数列是关键,考查分析观察与运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列{an}是调和数列,对于各项都是正数的数列{xn},满足x1=2,x1+x2+x3=14,${({x}_{n})}^{{a}_{n}}$=${({x}_{n+1})}^{{a}_{n+1}}$=${({x}_{n+2})}^{{a}_{n+2}}$(x∈N+),则数列{xn}的通项公式为2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在四面体S-ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,则该四面体外接球的表面积是$\frac{40}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.2016年欧洲杯将于2016年6月10日到7月10日在法国举行.为了使得赛会有序进行,欧足联在全球范围内选聘了30名志愿者(其中男性16名,女性14名).调查发现,男性中有10人会英语,女性中有6人会英语.
(1)根据以上数据完成以下2×2列联表:
会英语不会英语总计
男性10616
女性6814
总计161430
并回答能否在犯错的概率不超过0.10的前提下认为性别与会英语有关?
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(K2≥k00.400.250.100.010
k00.7081.3232.7066.635
(2)会英语的6名女性志愿者中曾有4人在法国工作过,若从会英语的6名女性志愿者中随机抽取2人做导游,则抽出的2人都在法国工作过的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某网络机构公布某单位关于上网者使用网络浏览器A、B的信息:
①316人使用A;
②478人使用B;
③104人同时使用A和B;
④567人只使用A、B中的一种网络浏览器.
则这条信息为假(填“真”或“假”),理由是由①②③知只使用一种浏览器的人数为:316-104+478-104=586.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P(2x+y,3x).
(Ⅰ)求矩阵M的逆矩阵M-1
(Ⅱ)求曲线4x+y-1=0在矩阵M的变换作用后得到的曲线C′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,其两个焦点与短轴的一个顶点是正三角形的三个顶点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)动点P在椭圆C上,直线l:x=4与x轴交于点N,PM⊥l于点M(M,N不重合),试问在x轴上是否存在定点T,使得∠PTN的平分线过PM中点,如果存在,求定点T的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=asinx+cosx,其中a>0.
(Ⅰ)当a≥1时,判断f(x)在区间[0,$\frac{π}{4}$]上的单调性;
(Ⅱ)当0<a<1时,若不等式$\frac{2a}{\sqrt{{a}^{2}+1}}$f(x)<t2+at+2对于x∈[0,$\frac{π}{4}$]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知三棱锥P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=$\sqrt{3}$AB,若三棱锥P-ABC的体积为$\frac{3}{2}$,则该三棱锥的外接球的体积为(  )
A.8$\sqrt{3}$πB.6$\sqrt{3}$πC.4$\sqrt{3}$πD.2$\sqrt{3}$π

查看答案和解析>>

同步练习册答案