分析 (Ⅰ)设点P(x,y)在矩阵M对应的变换作用下所得的点为P′(x′,y′),通过$\left\{\begin{array}{l}{x′=2x+y}\\{y′=3x}\end{array}\right.$可得M=$[\begin{array}{l}{2}&{1}\\{3}&{0}\end{array}]$,进而可得结论;
(Ⅱ)设点A(x,y)在矩阵M对应的变换作用下所得的点为A′(x′,y′),通过$[\begin{array}{l}{x}\\{y}\end{array}]$=M-1$[\begin{array}{l}{x′}\\{y′}\end{array}]$可得$\left\{\begin{array}{l}{x=-\frac{1}{3}y′}\\{y=-x′-\frac{2}{3}y′}\end{array}\right.$,代入曲线4x+y-1=0,计算即可.
解答 解:(Ⅰ)设点P(x,y)在矩阵M对应的变换作用下所得的点为P′(x′,y′),
则$\left\{\begin{array}{l}{x′=2x+y}\\{y′=3x}\end{array}\right.$即$[\begin{array}{l}{x′}\\{y′}\end{array}]$=$[\begin{array}{l}{2}&{1}\\{3}&{0}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$,
∴M=$[\begin{array}{l}{2}&{1}\\{3}&{0}\end{array}]$.
又det(M)=-3,
∴M-1=$[\begin{array}{l}{0}&{-\frac{1}{3}}\\{-1}&{-\frac{2}{3}}\end{array}]$;
(Ⅱ)设点A(x,y)在矩阵M对应的变换作用下所得的点为A′(x′,y′),
则$[\begin{array}{l}{x}\\{y}\end{array}]$=M-1$[\begin{array}{l}{x′}\\{y′}\end{array}]$=$[\begin{array}{l}{0}&{-\frac{1}{3}}\\{-1}&{-\frac{2}{3}}\end{array}]$$[\begin{array}{l}{x′}\\{y′}\end{array}]$,
即$\left\{\begin{array}{l}{x=-\frac{1}{3}y′}\\{y=-x′-\frac{2}{3}y′}\end{array}\right.$,
∴代入4x+y-1=0,得$4(-\frac{y′}{3})-x′-\frac{2}{3}y′-1=0$,
即变换后的曲线方程为x+2y+1=0.
点评 本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 6 | C. | 9 | D. | $\sqrt{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com