精英家教网 > 高中数学 > 题目详情
11.已知三棱锥P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=$\sqrt{3}$AB,若三棱锥P-ABC的体积为$\frac{3}{2}$,则该三棱锥的外接球的体积为(  )
A.8$\sqrt{3}$πB.6$\sqrt{3}$πC.4$\sqrt{3}$πD.2$\sqrt{3}$π

分析 如图所示,由于三棱锥P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,可得PO是三棱锥P-ABC的高,OA=OB=OC=OP=x,AC⊥BC.而2AC=$\sqrt{3}$AB,可得BC=x,AC=$\sqrt{3}$x.利用三棱锥的体积计算公式可得x,再利用球的体积计算公式即可得出.

解答 解:如图所示,
∵三棱锥P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,
∴PO是三棱锥P-ABC的高,OA=OB=OC=OP=x,
∴∠ACB=90°,
∴AC⊥BC.
∵2AC=$\sqrt{3}$AB,
∴∠ABC=60°,
∴BC=x,AC=$\sqrt{3}$x.
∴VP-ABC=$\frac{1}{3}•{S}_{△ABC}•PO$=$\frac{1}{3}×\frac{1}{2}×\sqrt{3}{x}^{2}×x$=$\frac{3}{2}$,
解得x=$\sqrt{3}$.
∴该三棱锥的外接球的体积V=$\frac{4π}{3}{x}^{3}$=$4\sqrt{3}π$.
故选:C.

点评 本题考查了线面垂直的性质、三棱锥的体积计算公式、球的体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在一个数列中,如果对任意n∈N+,都有anan+1an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=2,公积为8,记{an}的前n项和为Sn,则:
(1)a5=2.
(2)S2015=4700.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}中,a1=1,an+1=$\frac{n+2}{n}$an,求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与抛物线y2=8x有一个共同的焦点F,且两曲线的一个交点为P,若|PF|=5,则点F到双曲线的渐进线的距离为(  )
A.$\sqrt{3}$B.2C.$\sqrt{6}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,角A、B、C的对边分别为a、b、c,$sinA=\frac{{\sqrt{7}}}{4}$,a=2,sinC=2sinB,则b=$\sqrt{2}$或$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ex(lnx+k),(k为常数,e=2.71828…是自然对数的底数).函数y=f(x)的导函数为f′(x),且f′(1)=0.
(1)求k的值;
(2)设g(x)=f′(x)-2[f(x)+ex],φ(x)=$\frac{e^x}{x}$,g(x)≤t•φ(x)恒成立.求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数y=xsinx+cosx的图象上的点(x0,y0)处的切线的斜率为k,若k=g(x0),则函数k=g(x0)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}的前n项和为Sn,已知a1=a(a≠3),an+1=Sn+3n,n∈N*
(Ⅰ)设bn=Sn-3n,求证:数列{bn}是等比数列,并写出数列{bn}的通项公式;
(Ⅱ)若an+1>an对n∈N*任意都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知{an}为各项都是正数的等比数列,若a4•a8=4,则a5•a6•a7=(  )
A.4B.8C.16D.64

查看答案和解析>>

同步练习册答案