精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=sin(2x-$\frac{π}{6}$)-2cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+2cos2x(x∈R),则函数f(x)在[0,$\frac{π}{2}$]上的值域为[-$\frac{1}{2}$,1].

分析 运用两角和差的正弦和余弦公式,及二倍角公式,化简函数f(x),再由x的范围,结合正弦函数的图象和性质,计算即可得到值域.

解答 解:f(x)=sin(2x-$\frac{π}{6}$)-2cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+2cos2x
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x-2($\frac{\sqrt{2}}{2}$cosx+$\frac{\sqrt{2}}{2}$sinx)($\frac{\sqrt{2}}{2}$cosx-$\frac{\sqrt{2}}{2}$sinx)+2cos2x
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}cos2x$-cos2x+2cos2x
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x
=sin(2x+$\frac{π}{6}$).
由x∈[0,$\frac{π}{2}$],
2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
则sin(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1].
故答案为:[-$\frac{1}{2}$,1].

点评 本题考查两角和差的正弦和余弦公式的运用,同时考查正弦函数的图象和性质,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知曲线C的方程为$\frac{x^2}{4}+\frac{y^2}{5}$=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐 标系,直线l的极坐标方程为$ρcos(θ-\frac{π}{4})=2\sqrt{2}$.
(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)已知M是曲线C上任意一点,求点M到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥A-BCED中,△ABC为正三角形,EC⊥平面ABC,BD⊥平面ABC,M为棱EA的中点,CE=2BD.
(Ⅰ)求证:DM∥平面ABC;
(Ⅱ)求证:平面BDM⊥平面ECA.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,动点A在函数$y=\frac{1}{x}(x<0)$的图象上,动点B在函数$y=\frac{2}{x}(x>0)$的图象上,过点A,B分别向x轴,y轴作垂线,垂足分别为A1,A2,B1,B2,若|A1B1|=4,则|A2B2|的最小值为(  )
A.$3+2\sqrt{2}$B.$\frac{{3+2\sqrt{2}}}{4}$C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和为Sn,且an+1=Sn+1(n∈N*),a1=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)在an与an+1之间插入n个数,使这n+2个数组成一个公差为dn的等差数列,求数列$\{\frac{1}{d_n}\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.民乐乐团筹备了一场新年音乐会,12月31日在中山音乐礼堂演出,并对外售票,成人票5元,学生票3元,假设有n个成人和m个学生参加新年音乐会,其设计算法框图,完成售票计费工作,要求输出最后的票房收入.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=mex-$\frac{lnx}{x}$-nexx3,且函数f(x)在点(1,e)处的切线与直线x-(2e+1)y-3=0垂直,求证:当x∈(0,1)时,f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设f(x)=lnx,g(x)=f(x)+f′(x)
(1)求f(x)=lnx在点(e,f(e))的切线方程;
(2)求g(x)的单调区间和最小值;
(3)求a的取值范围,使得g(a)-g(x)<$\frac{1}{a}$对任意x>0成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,若输出s的值为22,那么输入的n值等于(  )
A.6B.7C.8D.9

查看答案和解析>>

同步练习册答案