14£®ÔÚÖ±½Ç×ø±êϵxoyÖУ¬Ö±lÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2-\frac{\sqrt{2}}{2}t}\\{y=6+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxoyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=10cos¦È£®
£¨1£©ÇóÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA¡¢B£¬ÈôµãPµÄ×ø±êΪ£¨2£¬6£©£¬Çó|PA|+|PB|£®

·ÖÎö £¨1£©ÓɦÑ=10cos¦ÈµÃ¦Ñ2=10¦Ñcos¦È£¬°Ñ$\left\{\begin{array}{l}{{¦Ñ}^{2}={x}^{2}+{y}^{2}}\\{x=¦Ñcos¦È}\end{array}\right.$´úÈë¼´¿ÉµÃ³ö£®
£¨2£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬»¯Îª${t}^{2}+9\sqrt{2}t+20$=0£¬¿ÉÉèt1£¬t2ÊÇÉÏÊö·½³ÌµÄÁ½¸öʵ¸ù£®ÀûÓÃ|PA|+|PB|=|t1|+|t2|=-£¨t1+t2£©¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓɦÑ=10cos¦ÈµÃ¦Ñ2=10¦Ñcos¦È£¬
¡àÖ±½Ç×ø±ê·½³ÌΪ£ºx2+y2=10x£¬Å䷽Ϊ£º£¨x-5£©2+y2=25£®
£¨2£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬»¯Îª${t}^{2}+9\sqrt{2}t+20$=0£¬
ÓÉÓÚ¡÷=$£¨9\sqrt{2}£©^{2}$-4¡Á20=82£¾0£¬¿ÉÉèt1£¬t2ÊÇÉÏÊö·½³ÌµÄÁ½¸öʵ¸ù£®
¡àt1+t2=-$9\sqrt{2}$£¬t1t2=20£¬ÓÖÖ±Ïßl¹ýµãP£¨2£¬6£©£¬
¿ÉµÃ£º|PA|+|PB|=|t1|+|t2|=-£¨t1+t2£©=9$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³ÌµÄÓ¦Óᢼ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÊýÁÐ{an}Âú×㣺a1=2£¬an+1=an2-kan+k£¬£¨k¡ÊR£©£¬a1£¬a2£¬a3·Ö±ðÊǹ«²î²»ÎªÁãµÄµÈ²îÊýÁÐ{bn}µÄǰÈýÏ
£¨¢ñ£©ÇókµÄÖµ£»
£¨¢ò£©ÇóÖ¤£º¶ÔÈÎÒâµÄn¡ÊN*£¬bn£¬b2n£¬b4n²»¿ÉÄܳɵȱÈÊýÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®¶ÔÓÚ¼¯ºÏA={x|x=2k+1£¬k¡ÊN}ºÍ¼¯ºÏB={x|x=a*b£¬a£¬b¡ÊA}£¬ÈôÂú×ãB⊆A£¬Ôò¼¯ºÏBÖеÄÔËËã¡°*¡±¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®¼Ó·¨B£®¼õ·¨C£®³Ë·¨D£®³ý·¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®f£¨x£©=$\left\{\begin{array}{l}{1£¬x¡Ý2}\\{-1£¬x£¼2}\end{array}\right.$£¬Ôò²»µÈʽx2•f£¨x£©+x-2¡Ü0½â¼¯ÊÇ{x|x£¼2}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÖ±½Ç¡÷ABCÖУ¬Ð±±ßAB=6£¬DΪÏß¶ÎABµÄÖе㣬PΪÏß¶ÎCDÉÏÈÎÒâÒ»µã£¬Ôò£¨$\overrightarrow{PA}$+$\overrightarrow{PB}$£©•$\overrightarrow{PC}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®-$\frac{9}{2}$B£®$\frac{9}{2}$C£®-2D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èçͼ£¬ÔÚÔ²CÖУ¬ÒÑÖªÒ»ÌõÏÒAB=6£¬Ôò$\overrightarrow{AB}$•$\overrightarrow{AC}$=18£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑ֪ij¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¨³¤¶Èµ¥Î»Îª£ºcm£©£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ16cm3£¬±íÃæ»ýΪ34+6$\sqrt{5}$cm2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÏÂÁÐÔËËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®£¨a-b£©2=a2-b2B£®£¨$\frac{1}{3}$£©-1=3C£®£¨-2£©3=8D£®a6-a3=8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{£¨3a-1£©x+4a£¬x£¼1}\\{lo{g}_{a}x£¬x¡Ý1}\end{array}\right.$£¬Âú×ã¶ÔÈÎÒâµÄʵÊýx1¡Ùx2£¬¶¼ÓÐ$\frac{f£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$£¼0³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨0£¬1£©B£®£¨0£¬$\frac{1}{3}$£©C£®[$\frac{1}{7}$£¬$\frac{1}{3}$£©D£®[$\frac{1}{7}$£¬1£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸