分析 (1)f'(x)=x2-2(1+a)x+4a=(x-2)(x-2a),即可得出单调性.
(2)由(1)知,当x≥0时,f(x)在x=2a或x=0处取得最小值.进而得出.
解答 解:(1)f'(x)=x2-2(1+a)x+4a=(x-2)(x-2a),
由a>1知,当x<2时,f'(x)>0,故f(x)在区间(-∞,2)是增函数;
当2<x<2a时,f'(x)<0,故f(x)在区间(2,2a)是减函数;
当x>2a时,f'(x)>0,故f(x)在区间(2a,+∞)是增函数.
综上,当a>1时,f(x)在区间(-∞,2)和(2a,+∞)是增函数,在区间(2,2a)是减函数.
(2)由(1)知,当x≥0时,f(x)在x=2a或x=0处取得最小值.$f({2a})=\frac{1}{3}{({2a})^3}-({1+a}){({2a})^2}+4a•2a+24a=-\frac{4}{3}{a^3}+4{a^2}+24a$,f(0)=24a,
由假设知$\left\{{\begin{array}{l}{a>1}\\{f({2a})≥0}\\{f(0)≥0}\end{array}}\right.$,即$\left\{{\begin{array}{l}{a>1}\\{-\frac{4}{3}a({a+3})({a-6})≥0}\\{24a≥0}\end{array}}\right.$,解得1<a≤6,
故a的取值范围是(1,6].
点评 本题考查了利用导数研究函数的单调性极值与最值、函数的单调性、不等式的解法,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直线和直线外一点确定一个平面 | |
| B. | 过不在一条直线上的三点,有且只有一个平面 | |
| C. | 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 | |
| D. | 平行于同一个平面的两个平面相互平行 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ②④ | C. | ②③④ | D. | ①②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com