【题目】在△ABC中,角A、B,C所对的边为a,b,c,若 ![]()
(1)求角B的值;
(2)求△ABC的面积.
【答案】
(1)解:∵a=2
,b=6,A=30°,
∴由正弦定理
=
得:sinB=
=
=
,
∵a<b,∴A<B,
∴B=60°或B=120°;
(2)解:当B=60°时,C=180°﹣30°﹣60°=90°,
∴S△ABC=
ab=
×2
×6=6
;
当B=120°时,C=180°﹣30°﹣120°=30°,
∴S△ABC=
absinC=
×2
×6×
=3
.
【解析】(1)由A的度数求出sinA的值,再由a与b的长,利用正弦定理求出sinB的值,由a小于b,得到A小于B,利用特殊角的三角函数值即可求出B的度数;(2)由A与B的度数,利用三角形的内角和定理求出C的度数,利用三角形的面积公式即可求出三角形ABC的面积.
【考点精析】本题主要考查了正弦定理的定义的相关知识点,需要掌握正弦定理:
才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥S﹣ABC中,M是SC的中点,且AM⊥SB,底面边长AB=2
,则正三棱锥S﹣ABC的体积为 , 其外接球的表面积为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】连接球面上两点的线段称为球的弦,半径为4的球的两条弦AB、CD的长度分别为2
和4
,M、N分别是AB、CD的中点,两条弦的两端都在球面上运动,有下面四个命题:
①弦AB、CD可能相交于点M;
②弦AB、CD可能相交于点N;
③MN的最大值是5;
④MN的最小值是1;
其中所有正确命题的序号为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知几何体A﹣BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形. ![]()
(1)求此几何体的体积V的大小;
(2)求异面直线DE与AB所成角的余弦值;
(3)求二面角A﹣ED﹣B的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阿海准备购买“海马”牌一辆小汽车,其中购车费用12.8万元,每年的保险费、汽油费约为0.95万元,年维修、保养费第一年是0.1万元,以后逐年递增0.1万元.请你帮阿海计算一下这种汽车使用多少年,它的年平均费用最少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设不等式组
所表示的平面区域为Dn , 记Dn内的格点(格点即横坐标和纵坐标皆为整数的点)的个数为f(n)(n∈N*).
(1)求f(1)、f(2)的值及f(n)的表达式;
(2)设bn=2nf(n),Sn为{bn}的前n项和,求Sn;
(3)记
,若对于一切正整数n,总有Tn≤m成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求证: ![]()
(1)直线DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-5:不等式选讲
定义在
上的函数
,若
,有
,则称函数
为定义在
上的非严格单增函数;若
,有
,则称函数
为定义在
上的非严格单减函数.已知:
.
(1)若函数
为定义在
上的非严格单增函数,求实数
的取值范围.
(2)若函数
为定义在
上的非严格单减函数,试解不等式
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com