分析 (Ⅰ)通过对an+1=2an+1变形可知an+1+1=2(an+1),进而可知数列{an+1}是首项、公比均为1的等比数列,计算即得结论;
(Ⅱ)通过(I)可知bn=(2n+1)•2n,利用错位相减法计算即得结论.
解答 (Ⅰ)证明:∵an+1=2an+1,
∴an+1+1=2(an+1),
又∵a1+1=1+1=2,
∴数列{an+1}是首项、公比均为1的等比数列,
∴an+1=2n,an=-1+2n;
(Ⅱ)解:由(I)可知bn=(2n+1)(an+1)=(2n+1)•2n,
则Sn=3•21+5•22+…+(2n+1)•2n,
2Sn=3•22+5•23+…+(2n+1)•2n+1,
两式相减得:-Sn=3•21+2(22+23+…+2n)-(2n+1)•2n+1
=3•21+2•$\frac{4(1-{2}^{n-1})}{1-2}$-(2n+1)•2n+1
=-2-(2n-1)•2n+1,
∴Sn=2+(2n-1)•2n+1.
点评 本题考查数列的通项及前n项和,考查错位相减法,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{3}$π | B. | $\frac{8\sqrt{2}}{3}$π | C. | $\sqrt{6}$π | D. | 8$\sqrt{6}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-12] | B. | (-∞,-4] | C. | (-∞,8] | D. | $({-∞,\frac{31}{2}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(2x)=2g2(x)+1 | B. | f2(x)-g2(x)=1 | C. | f2(x)+g2(x)=f(2x) | D. | f(x+y)=f(x)f(y)-g(x)g(y) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{3\sqrt{2}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com