精英家教网 > 高中数学 > 题目详情
11.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+3,(x>0)}\\{1,(x=0)}\\{x+4(x<0)}\end{array}\right.$,则f(f(f(-4)))=4.

分析 由已知中f(x)=$\left\{\begin{array}{l}{{x}^{2}+3,(x>0)}\\{1,(x=0)}\\{x+4(x<0)}\end{array}\right.$,将x=-4代入可得答案.

解答 解:∵f(x)=$\left\{\begin{array}{l}{{x}^{2}+3,(x>0)}\\{1,(x=0)}\\{x+4(x<0)}\end{array}\right.$,
∴f(-4)=0,
f(f(-4))=f(0)=1,
f(f(f(-4)))=f(1)=4,
故答案为:4.

点评 本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.四棱锥P-ABCD中,PC=AB=1,BC=2,∠ABC=60°,底面ABCD为平行四边形,PC⊥平面ABCD,点M,N分别为AD,PC的中点.
(1)求证:MN∥平面PAB;
(2)求三棱锥B-PMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{-x,-1≤x≤0}\\{{x}^{2},0<x≤1}\\{2x,1<x≤2}\end{array}\right.$,求:
(1)f(-$\frac{2}{3}$),f($\frac{1}{2}$),f($\frac{3}{2}$)的值;
(2)作出函数的简图;
(3)求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线x+$\sqrt{2}$y-1=0的斜率是(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=$\left\{\begin{array}{l}{3x+\frac{5}{2},x<1}\\{{2}^{x},x≥1}\end{array}\right.$,则满足f(f(a))=2f(a)的a的取值范围是[-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在边长为4的等边三角形ABC中,点D,E,F分别是边AB,AC,BC的中点,DC∩EF=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图的四棱锥P-ABFE,且PB=$\sqrt{10}$.
(1)求证:AB⊥平面POD;
(2)求四棱锥P-ABFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.命题“?x∈R,x2=x”的否定是(  )
A.?x∉R,x2≠xB.?x∈R,x2≠xC.?x∉R,x2≠xD.?x∈R,x2≠x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设Sn为等差数列{an}的前n项和,S10=110,S15=240.
(1)求数列{an}的通项公式;
(2)令bn=$\frac{{a}_{n+1}}{{a}_{n}}$+$\frac{{a}_{n}}{{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x+1|.
(1)求不等式f(x)+1<f(2x)的解集M;
(2)设a,b∈M,证明:f(ab)>f(a)-f(-b).

查看答案和解析>>

同步练习册答案