精英家教网 > 高中数学 > 题目详情
20.已知单调递增的等比数列{an}满足:a1+a2+a3=14,且a2+1是a1,a3的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog2an,Sn为数列{bn}的前n项和,求Sn-n•2n+1<-50成立的n的最小值.

分析 (1)设单调递增的等比数列{an}的公比为q,由于a1+a2+a3=14,且a2+1是a1,a3的等差中项.可得${a}_{1}(1+q+{q}^{2})$=14,2(a2+1)=a1+a3,即2(a1q+1)=${a}_{1}(1+{q}^{2})$,联立解出即可得出.
(2)bn=anlog2an,=n•2n.利用“错位相减法”即可得出数列bn}的前n项和Sn

解答 解:(1)设单调递增的等比数列{an}的公比为q,∵a1+a2+a3=14,且a2+1是a1,a3的等差中项.
∴${a}_{1}(1+q+{q}^{2})$=14,2(a2+1)=a1+a3,即2(a1q+1)=${a}_{1}(1+{q}^{2})$,
联立解得a1=2,q=2;或a1=8,q=$\frac{1}{2}$,(舍去).
∴an=2n
(2)bn=anlog2an,=n•2n
∴数列bn}的前n项和Sn=2+2×22+3×23+…+n•2n
2Sn=22+2×23+…+(n-1)•2n+n•2n+1
∴-Sn=2+22+…+2n-n•2n+1=$\frac{2({2}^{n}-1)}{2-1}$-n•2n+1=(1-n)•2n+1-2,
∴Sn=(n-1)•2n+1+2,
Sn-n•2n+1<-50化为:-2n+1+2<-50,即2n>26,
∴Sn-n•2n+1<-50成立的n的最小值为5.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”方法、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知直线PQ的斜率为$-\sqrt{3}$,将直线绕点P顺时针旋转60°所得的直线的斜率是(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{3}$C.0D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow a=(cosα,sinα)$,$\overrightarrow b=(cosβ,sinβ)$$(0<α<\frac{π}{2}\;,\;-\frac{π}{2}<β<0)$且$|\overrightarrow a-\overrightarrow b|=\frac{{2\sqrt{5}}}{5}$.
(Ⅰ)求cos(α-β)的值;
(Ⅱ)若$cosβ=\frac{12}{13}$,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.口袋中有四个小球,其中一个黑球三个白球,从中随机取出两个球,则取到的两个球同色的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知0<a<b,函数f(x)=$\frac{1}{x}$+2,则对于任意x1,x2且x1≠x2,使f(b)≤$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$≤f(a)恒成立的函数g(x)可以是(  )
A.g(x)=$\frac{1}{{x}^{2}}$+1B.g(x)=lnx+2xC.g(x)=-$\frac{1}{x}$-2D.g(x)=ex($\frac{1}{x}$+2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,点A(1,$\frac{\sqrt{3}}{2}$)在椭圆C上,|AF1|+|AF2|=4,则椭圆C的离心率是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{5}}{4}$C.$\frac{2}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,右顶点A(2,0).
(1)求椭圆C的方程;
(2)在x轴上是否存在定点M,使得过M的直线l交椭圆于B、D两点,且${k_{AB}}{k_{AD}}=-\frac{3}{4}$恒成立?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式(x-1)(x+1)<0的解集为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和为Sn,且an=2n-1,数列{bn}满足2$\sum_{i=1}^{n}i•{b}_{i}$-2n=Sn,若bn≥λ对任意的n∈N*恒成立,则实数λ的取值范围为(-∞,1]..

查看答案和解析>>

同步练习册答案