精英家教网 > 高中数学 > 题目详情
15.已知0<a<b,函数f(x)=$\frac{1}{x}$+2,则对于任意x1,x2且x1≠x2,使f(b)≤$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$≤f(a)恒成立的函数g(x)可以是(  )
A.g(x)=$\frac{1}{{x}^{2}}$+1B.g(x)=lnx+2xC.g(x)=-$\frac{1}{x}$-2D.g(x)=ex($\frac{1}{x}$+2)

分析 由于g′(x)=$\underset{lim}{{x}_{1}→{x}_{2}}$$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$,故“f(b)≤$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$≤fa)恒成立”?“恒有f(b)≤g′(x)≤f(a)”.再依据函数f(x)单调性,即可得到正确结论.

解答 解:由于对于任意x1,x2∈[a,b],且x1≠x2,使f(b)≤$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$≤f(a)恒成立
则对于任意x∈[a,b],恒有f(b)≤g′(x)≤f(a)
由于0<a<b,函数f(x)=2+$\frac{1}{x}$在[a,b]上单调递减函数,
则只需使g′(x)=f(x)即可,
故选:B.

点评 本题考查导数的概念,解题关键是在[a,b]上,将“f(b)≤$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$≤f(a)恒成立”转化为“恒有f(b)≤g′(x)≤f(a)”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\frac{{{2^x}-1}}{{{2^x}+1}}(x∈{R})$.
(1)证明f(x)是奇函数;   
(2)证明f(x)是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数$f(x)=sinx-cos(x+\frac{π}{6})$的最小值为(  )
A.-2B.$\sqrt{3}$C.1D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某校高二年级有10个班,若每个班有50名同学,均随机编号1,2,…50,为了了解他们对体育运动的兴趣,要求每班第15号同学留下来进行问卷调查,这里运用的抽样方法是(  )
A.抽签法B.系统抽样C.随机数表法D.分层抽样

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知圆M:(x-2)2+(y-1)2=5,则过点O(0,0)的圆M的切线方程为y=-2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知单调递增的等比数列{an}满足:a1+a2+a3=14,且a2+1是a1,a3的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog2an,Sn为数列{bn}的前n项和,求Sn-n•2n+1<-50成立的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.C${\;}_{3}^{0}$+C${\;}_{4}^{1}$+C${\;}_{5}^{2}$+…+C${\;}_{21}^{18}$的值等于7315.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.质点M的运动规律为s=4t+4t2,则质点M在t=t0时的速度为(  )
A.4+4t0B.0C.8t0+4D.4t0+4t02

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲、乙两船同时从B点出发,甲船以每小时10($\sqrt{3}$-1)km的速度向正东航行,乙船以每小时20km的速度沿南偏东60°的方向航行,1小时后甲、乙两船分别到达A、C两点.
(Ⅰ)求A、C两点间的距离;
(Ⅱ)求此时A点观察C点的方位角.

查看答案和解析>>

同步练习册答案