| A. | g(x)=$\frac{1}{{x}^{2}}$+1 | B. | g(x)=lnx+2x | C. | g(x)=-$\frac{1}{x}$-2 | D. | g(x)=ex($\frac{1}{x}$+2) |
分析 由于g′(x)=$\underset{lim}{{x}_{1}→{x}_{2}}$$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$,故“f(b)≤$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$≤fa)恒成立”?“恒有f(b)≤g′(x)≤f(a)”.再依据函数f(x)单调性,即可得到正确结论.
解答 解:由于对于任意x1,x2∈[a,b],且x1≠x2,使f(b)≤$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$≤f(a)恒成立
则对于任意x∈[a,b],恒有f(b)≤g′(x)≤f(a)
由于0<a<b,函数f(x)=2+$\frac{1}{x}$在[a,b]上单调递减函数,
则只需使g′(x)=f(x)即可,
故选:B.
点评 本题考查导数的概念,解题关键是在[a,b]上,将“f(b)≤$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$≤f(a)恒成立”转化为“恒有f(b)≤g′(x)≤f(a)”.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | $\sqrt{3}$ | C. | 1 | D. | $-\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 抽签法 | B. | 系统抽样 | C. | 随机数表法 | D. | 分层抽样 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com