精英家教网 > 高中数学 > 题目详情
17.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点,过F1且垂直于x轴的直线交椭圆于P,Q两点,若△PQF2为正三角形,则椭圆的离心率是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

分析 先求出PF1 的长,直角三角形PF1F2 中,由边角关系得tan30°=$\frac{P{F}_{1}}{{F}_{1}{F}_{2}}$=$\frac{\frac{{b}^{2}}{a}}{2c}$,建立关于离心率的方程,解方程求出离心率的值

解答 解:由已知可得,PF1=$\frac{{b}^{2}}{a}$
∵tan30°=$\frac{P{F}_{1}}{{F}_{1}{F}_{2}}$=$\frac{\frac{{b}^{2}}{a}}{2c}$=$\frac{1-{e}^{2}}{2e}$=$\frac{\sqrt{3}}{3}$
∴$\sqrt{3}{e}^{2}+2e-\sqrt{3}=0$
∵0<e<1
∴e=$\frac{\sqrt{3}}{3}$
故选:D.

点评 本题考查椭圆的简单性质,直角三角形中的边角关系,解方程求离心率的大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ln(ex)-kx.
(1)求f(x)的单调区间;
(2)若?x∈(0,+∞),都有f(x)≤0,求实数k的取值范围;
(3)证明:$\frac{ln2}{3}+\frac{ln3}{4}+…+\frac{lnn}{n+1}<\frac{n(n-1)}{4}$(n∈N*,且n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ln(x+1)-kx2+k(k∈R).
(1)若函数f(x)过P(0,1),求f(x)在点P处的切线方程;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一副三角板如图拼成,AB=AC,∠BAC=90°,∠DBC=30°,∠BCD=90°,将△BCD沿BC折起,使得平面ABC⊥平面BCD.
(1)若AB=$\sqrt{2}$,求四面体A-BCD的体积;
(2)求证:平面ABD⊥平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在底面为梯形的四棱锥S-ABCD中,已知AD∥BC,∠ASC=60°,AD=DC=$\sqrt{2}$,SA=SC=SD=2.
(Ⅰ)求证:AC⊥SD;
(Ⅱ)求三棱锥B-SAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别为A1D1和A1B1的中点.
(Ⅰ)求二面角B-FC1-B1的余弦值;
(Ⅱ)若点P在正方形ABCD内部及边界上,且EP∥平面BFC1,求|EP|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点B(0,-2).
(1)求此椭圆的方程;
(2)若直线y=kx+1(k≠0)交椭圆C于不同的两点E,F,且E,F都在以B为圆心的圆上,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆$\frac{{x}^{2}}{4}$+y2=1的左右焦点分别为F1、F2,以它的短轴为直径作圆O,若点P是O上的动点,则|PF1|2+|PF2|2的值是(  )
A.8B.6C.4D.与点P的位置有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,AP⊥平面PBC,AB∥DC,AP=AD=DC=$\frac{1}{2}$AB=1,∠ADC=120°,E,F分别为线段AB,PC的中点.
(Ⅰ)求证:AP∥平面EFD;
(Ⅱ)求证:平面EFD⊥平面APC;
(Ⅲ)求锥体P-ADC的体积.

查看答案和解析>>

同步练习册答案