精英家教网 > 高中数学 > 题目详情
2.在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别为A1D1和A1B1的中点.
(Ⅰ)求二面角B-FC1-B1的余弦值;
(Ⅱ)若点P在正方形ABCD内部及边界上,且EP∥平面BFC1,求|EP|的最小值.

分析 以D为坐标原点,以DA,DC,DD1分别为x轴、y轴、z轴正方向建立空间直角坐标系.求出B,C1,E,F的坐标,
(Ⅰ)求出面FC1B1的一个法向,面BFC1的法向量,利用空间向量的数量积求解二面角B-FC1-B1的余弦值.
(Ⅱ)设P(x,y,0)(0≤x≤1,0≤y≤1),利用EP∥平面BFC1,推出$\overrightarrow{EP}⊥\overrightarrow{n_2}$,求出x,y的关系,利用空间距离结合二次函数的最值求解即可.

解答 解:以D为坐标原点,以DA,DC,DD1分别为x轴、y轴、z轴正方向建立空间直角坐标系.
则$B(1,1,0),{C_1}(0,1,1),E(\frac{1}{2},0,1),F(1,\frac{1}{2},1)$.
(Ⅰ)由图可取面FC1B1的一个法向量$\overrightarrow{n_1}=({0,0,1})$;$\overrightarrow{B{C_1}}=({-1,0,1}),\overrightarrow{BF}=({0,-\frac{1}{2},1})$,设面BFC1的法向量为$\overrightarrow{n_2}$,则$\left\{{\begin{array}{l}{\overrightarrow{n_2}•\overrightarrow{B{C_1}}=0}\\{\overrightarrow{n_2}•\overrightarrow{BF}=0}\end{array}}\right.$,可取$\overrightarrow{n_2}=({1,2,1})$.
所以$cos\left?{\overrightarrow{n_1},\overrightarrow{n_2}}\right>=\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|{\overrightarrow{n_1}}||{\overrightarrow{n_2}}|}}=\frac{{\sqrt{6}}}{6}$,
即二面角B-FC1-B1的余弦值为$\frac{{\sqrt{6}}}{6}$.
(Ⅱ)因为P在正方形ABCD内部及边界上,所以可设P(x,y,0)(0≤x≤1,0≤y≤1),
则$\overrightarrow{EP}=({x-\frac{1}{2},y,-1})$.
因为EP∥平面BFC1,所以$\overrightarrow{EP}⊥\overrightarrow{n_2}$,即$({x-\frac{1}{2},y,-1})•$(1,2,1)=0,
所以$x=-2y+\frac{3}{2}$,∵0≤x≤1,0≤y≤1,
∴$0≤-2y+\frac{3}{2}≤1,0≤y≤1$,∴$\frac{1}{4}≤y≤\frac{3}{4}$,
所以$|{\overrightarrow{EP}}|=\sqrt{{{({x-\frac{1}{2}})}^2}+{y^2}+1}$=$\sqrt{{{({2y-1})}^2}+{y^2}+1}=\sqrt{5{y^2}-4y+2}=\sqrt{5{{({y-\frac{2}{5}})}^2}+\frac{6}{5}}$,
当$y=\frac{2}{5}$时,${|{\overrightarrow{EP}}|_{min}}=\frac{{\sqrt{30}}}{5}$.

点评 本题看v我没觉得平面角的求法,空间距离公式的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{2}$ax2-(2a+1)x+21nx(a∈R).
(1)当a=$\frac{2}{3}$时,求函数f(x)的单调区间;
(2)当a>$\frac{1}{2}$时,设g(x)=(x2-2x)ex.求证;对任意x1∈(0,2],均存在∈(0,2],使得f(x1)<g(x2)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正四棱锥的高为4,侧棱长为3$\sqrt{2}$,则该棱锥的体积为$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为(  )
A.$\frac{2π}{3}$B.$\frac{16π}{9}$C.$\frac{π}{3}$D.$\frac{2π}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点,过F1且垂直于x轴的直线交椭圆于P,Q两点,若△PQF2为正三角形,则椭圆的离心率是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax3+$\frac{3}{2}$x2sinθ-6x+1,且对任意的实数t,恒有f′(-e${\;}^{{t}^{2}}$)≥0,f′(3|cost|-1)≤0.
(1)求函数f(x)的解析式;
(2)对?x1,x2∈[0,3],求证:|f(x1)-f(x2)|≤10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,三棱柱ABC-A1B1C1的侧棱长和底面边长均为4,且侧棱AA1⊥底面ABC,其正(主)视图是边长为4的正方形,则此三棱柱侧(左)视图的面积为(  )
A.16B.4$\sqrt{3}$C.8$\sqrt{2}$D.8$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在平面直角坐标系xOy中,椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1上一点A(2,$\sqrt{2}$),点B是椭圆上任意一点(异于点A),过点B作与直线OA平行的直线l交椭圆于点C,当直线AB、AC斜率都存在时,kAB+kAC=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$\sqrt{2x-5}$的定义域为A,B={x|x2≥a2}.
(1)若a=2,求A∩B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案