分析 (1)由面面垂直的性质可知△ABC的高为棱锥的高,求出△BCD的面积和棱锥的高,代入体积公式计算;
(2)由平面ABC⊥平面BCD可得CD⊥平面ABC,故CD⊥AB,又AB⊥AC,从而可证AB⊥平面ACD,于是平面ABD⊥平面ACD.
解答 证明:(1)∵平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,CD⊥BC,CD?平面BCD,
∴CD⊥平面ABC,
∵AB=$\sqrt{2}$,AB=AC,∠BAC=90°,∴AC=$\sqrt{2}$,BC=2,
∵∠DBC=30°,∠BCD=90°,∴CD=1,
∴V棱锥A-BCD=V棱锥D-ABC=$\frac{1}{3}$S△ABC•CD=$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×\sqrt{2}×1$=$\frac{1}{3}$.
(2)由(1)知CD⊥平面ABC,∵AB?平面ABC,
∴CD⊥AB,又∵AB⊥AC,AC?平面ACD,CD?平面ACD,AC∩CD=C,
∴AB⊥平面ACD,∵AB?平面ABD,
∴平面ABD⊥平面ACD.
点评 本题考查了面面垂直的性质与判定,线面垂直的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{3}$ | B. | $\frac{16π}{9}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 4$\sqrt{3}$ | C. | 8$\sqrt{2}$ | D. | 8$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com