精英家教网 > 高中数学 > 题目详情
20.已知椭圆C的左、右焦点分别为F1,F2,过F2的直线与椭圆相交于P,Q两点,若PQ⊥PF1,且4PF1=3PQ,则椭圆的离心率e=$\frac{\sqrt{2}}{2}$.

分析 设|QF2|=m,|PF2|=n,利用椭圆的定义可得|QF1|=2a-m,|PF1|=2a-n.由4|PF1|=3|PQ|,可得4(2a-n)=3(m+n).由PF1⊥PQ,利用勾股定理可得:(2a-n)2+n2=4c2,(2a-n)2+(m+n)2=(2a-m)2.联立解得即可.

解答 解:如图所示,设|QF2|=m,|PF2|=n,
则|QF1|=2a-m,|PF1|=2a-n.
∵4|PF1|=3|PQ|,∴4(2a-n)=3(m+n),
∵PF1⊥PQ,
∴(2a-n)2+n2=4c2
(2a-n)2+(m+n)2=(2a-m)2
联立$\left\{\begin{array}{l}{4(2a-n)=3(n+m)}\\{(2a-n)^{2}+{n}^{2}=4{c}^{2}}\\{(2a-n)^{2}+(m+n)^{2}=(2a-m)^{2}}\end{array}\right.$,
化为n=a,代入可得a2=2c2
解得e=$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.

点评 本题考查了椭圆的定义及其性质、勾股定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=axlnx(a≠0,a∈R)
(1)求f(x)的单调区间;
(2)当x∈(1,e)时,不等式$\frac{x-1}{a}$<lnx恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点P(x0,3)与点Q(x0,4)分别在椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1与抛物线y2=2px(p>0)上.
(1)求抛物线的方程;
(2)设点A(x1,y1),B(x2,y2)(y1≤0,y2≤0)是抛物线上的两点,∠AQB的角平分线与x轴垂直,求直线AB在y轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ln(x+1)-kx2+k(k∈R).
(1)若函数f(x)过P(0,1),求f(x)在点P处的切线方程;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)证明:函数y=xsinx+cosx在区间($\frac{3}{2}$π,$\frac{5}{2}$π)内是增函数.
(2)证明:函数f(x)=ex+e-x在[0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一副三角板如图拼成,AB=AC,∠BAC=90°,∠DBC=30°,∠BCD=90°,将△BCD沿BC折起,使得平面ABC⊥平面BCD.
(1)若AB=$\sqrt{2}$,求四面体A-BCD的体积;
(2)求证:平面ABD⊥平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在底面为梯形的四棱锥S-ABCD中,已知AD∥BC,∠ASC=60°,AD=DC=$\sqrt{2}$,SA=SC=SD=2.
(Ⅰ)求证:AC⊥SD;
(Ⅱ)求三棱锥B-SAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点B(0,-2).
(1)求此椭圆的方程;
(2)若直线y=kx+1(k≠0)交椭圆C于不同的两点E,F,且E,F都在以B为圆心的圆上,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知xy=2x+y+2(x>1),则x+y的最小值为7.

查看答案和解析>>

同步练习册答案